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Specific Features of Kinetics of Stochastically Gated, Diffusion-Controlled Reactions
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The kinetics of diffusion-controlled, stochastically gated biochemical reactions is analyzed within the markovian
approximation for stochastic fluctuations of reaction rate. With the use of methods developed in the theory
of magnetic field effects on chemical reactions, several general expressions for reaction rate and transient
kinetics of geminate and bulk reactions are derived. In particular, it is shown that gating strongly manifests
itself not only in steady-state reaction rates but also in the long time tail of kinetics. Specific features of gated
reactions in the presence of attractive potential, resulting in the long-lived intermediate state (cage), are
discussed. Two simple markovian models of gating are considered which allow significant simplification of
the general expressions obtained. Within these models simple analytical formulas for reaction rate and reaction
kinetics are derived and analyzed in detail.

I. Introduction This work describes the general method of the analytical
. ) . treatment of diffusion-controlled GRs within markovian ap-

The well-known important feature of some biochemical rgximation for gating. From mathematical and physical points
reactions, such as proteitigand binding, is the dependence ¢ view, the theory of GRs is very close to the theory of
of reaction rates on conformal transitions in reacting molecules. magnetic field effects (MFEs) on chemical reactions of para-
These transitions give rise to fluctuations of reaction rates magnetic particle&?11 The main mechanism of MFEs is based

(gating). Investigations demonstrate that rate fluctuations strongly o, the assumption that the rates of reaction of these particles
manifest themselves in kinetics of these so-called gated reactions, ¢ spin selectivé13i.e., reaction rates depend on the total

(GRs)z™ spin (internal state) of pairs of reacting particles. A similar idea
Possible manifestations of fluctuating reactivity in kinetics on the dependence of reactivity on internal states of reacting
of GRs have been analyzed theoretically in many recent pairs underlies the theory of diffusion-controlled G¥s.
articles®° Naturally, the most direct methods of analysis are  The treatment of MFEs reduces to solving the stochastic
based on numerical solution of the corresponding equafion. [ jguville equation (SLE)}2-14 which is actually the system of
Unfortunately, these methods are not very informative and do 3 jarge number of differential equations represented in the matrix
not give deep insight into the problem because of the numerousform. The general kinetic equation that describes &Rs a
parameters in the problem under study. In this situation the particular case of the SLE corresponding to the absence of
analysis within simple analytically solvable models is of great guantum transitions. This means that a lot of theoretical results

value. obtained in the strongly developed theory of M4 can be
One such model, very popular at present, is the model of the straightforwardly applied to the analysis of GR kinetics.
first-order reaction whose time-dependent reaction kéje~ The methods proposed in refs 10 and 11 are based on the

kK[s’(t)], where s(t) is a Gaussian stochastic variable which idea of solving the SLE directly in the matrix form without
represents the effect of conformal transitions on reactfity.  any assumptions on the mechanism of spin-selective transitions
This model has made it possible to reveal some interesting during the reactions. It is shown that the general matrix
properties of GRs. However, it is rather limited, which implies expressions for observables obtained by these methods appear
the above-mentioned fairly special type of kinetics and fluctua- to be very useful for qualitative analysis of results. In particular,

tions of k(t). this approach helps to find general relations between observables
Several works discuss the specific features of GRs within which are valid irrespective of the mechanisms of the transitions.
the markovian approximation for reactivity fluctuatiohs®® The obtained expressions also enable one to apply some models

This approximation has an advantage because it enables one tfor transitions in which these expressions can be reduced to
analyze the effect of gating on real nonexponential kinetics of simple analytical formulas.

diffusion-controlled reactions. In particular, this approach al-  The main purpose of this work is to analyze some specific
lowed Szabo and Zh8uo show that the effects of the gating features of diffusion-controlled GRs by the methods of the
of ligands and proteins on reaction kinetics are surprisingly theory of MFEs. These methods have permitted the elucidation
different. Some details of these effects were analyzed in ref 8 of specific properties of GR kinetics. In particular, simple matrix
within the simple markovian two-state model. Unfortunately, expressions are obtained for the yield of geminate and bulk GR
this model is clearly oversimplified. It is unable to take into in the absence and presence of interparticle interaction potential.
account important features of realistic gating [for example, the General analysis of the specific features of kinetics is carried
large number (continuum) of gating states involved in the out using these expressions. In the relaxation time model (RTM)
process, possible complicated spectrum of gating rates thatand single reactive channel model (SRCM) well-known in the
cannot be approximated by the only rate, etc.]. They can strongly theory of MFE, these matrix expressions are reduced to simple
manifest themselves in the kinetics of GRs. analytical formulas for reaction kinetics.
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Il. General Formulation The initial condition forgg(r,r'|t) is

For the convenience of the presentation and introduction of =0
notation, we start with geminate GRs. G(r.r'[t="0)

A. Geminate ReactionsThe kinetics of stochastically gated, AL . .
! I inetl Ica’y g d whereE = > 2/, 01 0 | O, | = Em® E is the unity matrix in

diffusion-controlled reactions of proteins, hereafter calle th ¢ ati tates that is the direct duct of unit
macromoleculer), with ligand () is generally characterized € space of gating states that is the direct product of unity
atrixes inm- andl-spaces.

by the vectors of parameters. These parameters are differenf” L .

for geminate and bulk reactions. The kinetics of geminate . Most of kinetic parameters ofGRAs can easily be represented
reactions is completely described by the vectp(r,t)0 of in terms of the Laplace transform &f
probabilities to find thenl-pair at a distance between reagents N o L«
and in gating statem,Jand |1,00of the macromolecule and Gy(rr'le) = j; dt gy(r,r'jt) e 9)
ligand, respectively. In our discussion we use the Dirac’s bra-

ket notation for gating states. In particular, expansiop¢f,t)d which obeys the steady-state SLE

in the complete bases of gating states is written |agr,t) (1=

=go(r.r) = Eo(r — )4’y (8)

3 Pt )M ;0 @ — L )G, =ayD (10)
The evolution of|p(r,t)dis completely determined by the
Green'’s functiongy(r,r'|t) of the SLE-type kinetic equation where
0, =DIL — (W,,+W)/D]g,=D(L — W /D)3, (1) q= /(e +W,,+W)/D (11)
r= [drg (rrt 0 2 In geminate reaction the pair of reacting molecules is assumed
P f gg( | )ng( ) &) to be formed at a distance> d in the equilibrium gating state
where|py(r,ty0= |p(r,t = 0)1J 0= |Om(JOL) i€,
Ineq 1
. Ip(r,t= 12)
L =V(V+pVU) 3) A,

(with 8 = 1/KT) is the Smoluchowsky operator that controls The kinetics of geminate reaction is determined by the time-
diffusive relative motion of theml-pair with the diffusion dependenml-reaction yield
coefficientsD in the interaction potentidl(r), which is assumed
to be spherically symmetric. The matrity = Wy, + W, (1) —fo dr 0| p(d,1) =
describes the markovian fluctuations of the reaction rate caused
by gating in macromoleculed\{,) and ligands \\4). —-{4ﬂd2f- deet HD|/%0Gg(d,ri|e)|O[kas‘} (13)
For the convenience of our further discussion we need special 2ri o
notation for the equilibrium eigenvectors

0= ZDWIJ'VD and = ZDIVI, G=ml) 4

It is evident from eq 13 that the total reaction yiéftt — )
is given by

Y(t— ) = Y,, = dnd’ 0]z,G,(dr;[0)00  (14)

of the matrixesii, andWi: W|0,0= W, =0 ( = m, I). In

eq 4,p;» is the equilibrium probability to find the system in the
gating state of the moleculg. Note that|0,(= 0| " because
the matrixesW, andW are nonhermitian. Also, according to
the definition (eq 4)p;, = 0}, ,|GL] This relation enables
one to interpret the matrix eIemeﬂDJ|A|OJ|Z|of any matrix
IE»|A|v 0= A0, diagonal in the basis of gating states as an

Note that eqs 13 and 14 are very similar to those obtained in
the theory of MFES911

Equations 13 and 14 reproduce the expected behaviqit)of
both in the limit of slow and fast gating. In the slow gating
limit, when the characteristic gating ratdé/,J| andII\Wll are
smaller than the characteristic reaction times, one caf set

average over the distributiqn),. (e+\7vg)/D ~ ¢/D and reduce the SLE (eq 10) to a system
of uncoupled equations. According to eq 13 in this cédgis
A _ the yield averaged over independent gating states. In the opposite
[0 |AI0 = [A = : 5
A0, 'd 2 AP, ©) limit of fast gating in the SLE (eq 9) one can use the

approximations = /(e+W,)/D ~ Ve/D |0ID| and ko =
Naturally, for the continuous distribution of eigenvalues [0|ko|00OM| = [&old|OI|, Where@foB Zuﬂco,upﬂ pl is the
the sum in eq 5 is replaced by the integral. average reactivity of thenl-pair (see also eq 5) in whicty,;
We also introduce the projection operators = [, || &oll,0m,LI In other words, in the fast gating limit the
R . kinetics of the gated reaction reduces to that of the reaction
P,=000| and Q=E—P(=ml) (6) without gating, but corresponding to the average reactikifyj
of the pair. Some specific properties of geminate reaction
in which E; is the unity matrix in the space ¢fgating states. kinetics are discussed below in two realistic models of relative
The Green’s function satisfies the reactive boundary condition motion of molecules.
B. Bulk Reactions. For bulk GRs the initial condition
ngﬁ)r|r 4= Kogg 7 corresponds to the delocalized spatial distribution function of
ligandspp(r) in the equilibrium gating stat®= |00,

where the reactivity matrixo is diagonal in thgmiEbasis of
gating states. Ip(r,t = 0)= |p,(r) = ¢py(r) |00 (15)
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wherec; is the bulk concentration of ligands. In our discussion
we will assume the thermal initial distribution functiopg(r)
= exp[-pU(n)].

The kinetics of bulk GRs is characterized by the survival
probability P(t) of m-molecules. In the pair approximation the
method of calculation oP(t) for reacting molecules without
internal degrees of freedom is well-kno¥frand quite simple.

The problem of proper treatment of internal degrees of freedom

within the pair approximation is solved in the theory of

MFEs116The corresponding extension of the method leads to

the expression fdP(t) in terms of the solution of the SLE similar

to eq 1, but not the same. The analysis performed in ref 11,
however, concerns reactions that lead to the simultaneous
disappearance of both reacting molecules and the concentration
of both molecules are comparable. At the same time, in the

considered reaction of macromolecutd,(whose concentration
is low, with ligands [) the m-molecule can be approximately
considered as a sink fol-molecules. In this case some
modification of the method proposed in ref 11 is required.
Following ref 11 let us treat the reaction of omemolecule
with |-molecules, distributed over the volume with the above-
mentioned distribution vectdp(r,t = 0)[] as a sequence afl-
encounters which are uncorrelated in time for differdentol-
ecules. It is important to point out that the effect lefand
m-gating transitions should be treated in different way. First,
we take into account onliygating and evaluate the correspond-
ing survival probabilityP|(t). In this case the average contribu-
tion of the encounter with onemolecule toP(t) is given by

1 pt
PO =1- v S drk(z) (16)
whereV is the volume of the system and
k(®) = O lik(t)I00 17)
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and therefore in the limih — o, V — o, butn/V = ¢,

. t

Pi(®) = lim P"(t) = expl—c, f{ drk@)]  (23)

Equation 23 describes the reaction kineticslfgating. The
additional effect of fluctuations of the reaction r&{# caused
by markovianm-gating transitions can be described with the
use of the well-known method of averaging of exponential
functionals depending on markovian fluctuating paramétets.
In our particular case the fluctuating parameter is the reactivity
ko. This method enables one to reduce the problem of averaging
of these functionals and evaluating the kinetl@) in the
presence ofngating to solution of the SLE:

P(H) = [0,R®I0, (24)

where theR(t) is the matrix in themrgating spacgm,Othat
satisfies the SLE

R=—K®R (25)

where

K(t) = ckt) + W, (26)

and

k(t) = S k,Im, T, | = 4rd? [0k, G,(dID)I00  (27)
"

is the matrix of time-dependent reaction rates diagonal in the
m-gating space. For each particulathe ratek, is calculated
by formulas 17 through 20, i.e., the effect bgating is
completely incorporated ik,. It is clear that in the absence of
I-gating k(t) = 47d? oG (d|t).

The expression in eq 24 coincides with that obtained in ref

is the average time-dependent reaction rate which is determineds Notice. however. that in ref 5 this formula is derived by the

by the reaction rate matrix
i PPN 1 ~ joo A
k() = 4md” &y (dit) = 5 [’ & [, de Gy(dle) €7
(18)

This matrix is expressed in terms of the Green’s function
0/(r/t) satisfying the SLE

§=D(L —W/D)g (19)
with the initial condition
G (rit="0)= g’ = p,(NE, (20)

or in terms of the corresponding Laplace transfdd|¢) that
obeys the corresponding steady-state SLE

(F—L)G=07YD with §=/(c+W)D (21)

Contribution of encounters with othémolecules td?(t) is

complicated method of solving truncated systems of equations
for reduced distribution functions of high order. The truncation
was made within the superposition approximation for the triplet
distribution function. The obtained nonlinear equation for the
pair distribution function is then reduced to eq 25 in some
additional approximation whose accuracy is in fact uncontrolled.
The above-mentioned analysis has shown that the rigorous
derivation is actually much simpler and does not appeal to any
properties of the triplet and higher order distribution functions
representing many-particle (three and more) correlations. The
expression (eq 24) is easily and rigorously derived in the pair
approximation.

Now let us briefly analyze the general specific features of
the bulk reaction kinetics predicted by eqgs 24 through 26. It is
clear that these equations reproduce the limiting behavior of
kinetics expected from the physical point of view. In particular,
in the limit of fast gating transitions whelWyJl > III, one
can use approximationk(t) + Win ~ ¢/0ny|K(t)|OmJ0mI0y, i.e.,
in this limit the kinetics of the bulk reaction reduces to that of
reaction without gating corresponding to the average reactivity.

similar to eq 16. These contributions can be summed up easilyIn the opposite limitIW,Jl < Ik, eq 24 describes the

on the assumption that the blips of the reaction kétfecaused
by encounters with differentmolecules are uncorrelated. In
so doing the survival probability resulting fromuncorrelated
ml-encounters is given by

n

P = [1 - \—1/fot dr k(7)

(22)

nonexponential kinetics of reaction in the uncoupled gating states
with different reactivities.

In general, if the matrixK, = K(t — ©) = Kp + Wy, in
which Ky = ¢k = ck(t — ) is the steady-state reaction rate
matrix, has the lowest nonzero eigenval(g, corresponding
to the lowest eigenstatén[) the long time asymptotic reaction
kinetics is exponential:
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P(t> K;.) = P eXP(-K;..0) (28)
where pn = [On|Amim|Omllis the weight (probability) of the
rate Ko = AmlKeo|Am If, however, the eigenvalues 6t, are
continuously distributed around zero, the kineti{§ becomes
strongly nonexponential (see section V).

Additional analysis of the various limits of eq 24 is made
below within realistic models of relative motion.

I1l. Free Diffusion

The problem of the analytic solution of SLEs (egs 1 and 10)
is essentially simplified in the absence of interaction potential:
U(r) = 0. In particular, the powerful method of analytical
solution of the steady-state SLE (eq 10) was propd%étwe

are not going to discuss the method, which was presented and

thoroughly analyzed in refs 10 and 11, but analyze the final
formulas.

A. Geminate Reactions.In geminate reactions the effects
of I- andm-gating on reaction kinetics are similar and can be
treated simultaneously. The method proposed in refs 10 and 1
gives the following expression for the matiGq (see eq 8):

Lrrile) = [ + e I (8agr) (29)

wherel’ = (§ + &)~ (§ — &) exp(—§A) with § defined by eq
11,k = ko + 1/d, andA = r; — d. Substituting eq 29 into eq
13 we get the final result for the yieMt) in terms of the inverse

rile)

Gyr.rle)=G

Laplace transform. Equations 13 and 29 enable one to perform
general analysis of geminate GRs. The final formulas are closely

related to those derived in the MFE thedf}!
For the initial state (eq 12) the expression for the reaction
yield is written as:

|oo+o de
—iot0o ¢

Yi(t) =

b

(30)

[Zﬂl /c + q(e)

This formula shows that in strong reactivitig| > 1/d, 1§l
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With the use of definitions 32 and 33, one can represent the
yield Y’ in the formY', = (1/r)0|L |00

In agreement with the general statement mentioned above,
for strong reactivitylcoll > 1/d, l1gull the yield Ye(ri) ~ d/r; is
practically independent of gating transitions, whereas for weak
reactivity Yo(r;) ~ (d?r;)0|<o|0C] where [0|ko|100= old =
zﬂ,,wqulpffpk is the average reactivity.

Naturally, eq 31 reproduces the results expected in the fast-
and slow-rate fluctuation limits:

(1). In the fast fluctuations limit, when all elgenvaluesvdj

= Wi, + W, except the equilibrium one (which is equal to zero),
are large enough to ensure inequallfyll > Ik, 1/(k + &w)
~ |Ol0|/[0|x|00and thus
Y, = L/r, andL, = d#,[J/(1 + d&,Q) (34)

Clearly in this limit the yield (eq 34) coincides with that
predicted for the reaction of particles with the average reactivity
[0|ko|00= [&old created at a distanag!®

J] (2) In the opposite limit of slow fluctuations, whégwll <
K

Y, = d? Wy/(1 + dig)r; (35)
which is expected for reagents with a set of uncoupled states
with different reactivity.

(3). As for the time dependence of the yiéfgt), in the limit
of fast gating this dependence is the same as for reagents with
nonfluctuating average reactivity (see eq 34). In the slow gating
limit the time dependence can be determined by considering
the gated reaction as a set of independent reactions with
reactivitieskqy.

A simple formula can be obtained for the long time tail of
OY(t) = Yf(t) — Y!, = m6¥(t)|0Xatt > d?/D). In the simplest
case of small initial distance and long time, wheh/Dt < 1,
the expansion of the Laplace transform (eq 29) in smgér
more correctly in smalléglld < 1, whered§ = § — w andgw
= yW,/D) and the subsequent inverse Laplace transformation

the gating effect is weak. The strongest effect is expected in Yield

the opposite limit of weak reactivity, whelikd| < 1/d and

reactivity can be treated pertubatively. Specific features of the

yield in the more complicated intermediate casélifl ~ 1Igl|

> 1/d will be analyzed in section V in the relaxation time model.
According to eq 29, the total reaction yieY{] (see eq 14) is

given by

Y, = Y, |00= (d/r,)O|&y(k + 6,) "

and@w = g(e = 0) = \/W,/D.
For our further discussion it is convenient to introduce two
matrixes of effective reaction radii

(31)

[ =diyk + 6, " and L. =di&+a) % (32)
and corresponding reaction rates
k,=47DL and K:=4xDL. (33)

The matricesk. and K’ are composed of bimolecular
reaction rates at— o (see below). In principlek., = kK and
(k)T = K: because the gating rate matricé4 and W,
generally are not hermitian. For slow gating, however, when
lgwdl < 1, L ~ [« = [ = d(k¢/&) and thusk. ~ k* = 47DL.

oY) =Y - Y, = k. @(WHIL  (36)

1
(471D)«/ﬁ

whereWg = Wi, + W, IT- = 1 — L./r; is the matrix of escaping
probabilities and

D(x) = € *[1 — Vax & erfc(vX)] (37)
in which erfc§k) = (2/~/E) [y dz exp(2? is the error
functionl” The function®(x) is monotonically decreased &s
is increased [with®(0) = 1 and®(x — «) ~ (2x)~1 e7].

In principle, expansion inldglld < 1 does not imply that
llgwld < 1, although ifllgwild ~ 1, eq 36 is valid only at
relatively large timeg > 1ANMI.

Equation 36 is a generalization of the corresponding expres-
sion for diffusion-controlled reactions in the absence of gating.
Itis clear from this equation that &= |IW | we getd (W) ~
|OI0|; therefore, the asymptotic time behaviory§f) coincides
with that predicted by the conventional formdfay(t) = (4xD
VD) Ku(1 — Ls/rj), wherek, = 0]K.|0CandLs = [O|L+|00]
Note, however, that the form of the functiah(\W), and thus
the form of convergence of the yiel{t) to the conventional
asymptotic one essentially depends on the spectrum of the matrix

W.
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B. Bulk Reactions. The bulk GR kinetics is controlled by
the matrixK(t) defined in eq 26. The main problem of analysis
of the kinetics is in evaluating the time-dependent rgte.

Shushin

2. Gated Macromoleculét follows from eqs 24-28 that the
long time asymptotic kinetics ah-gated reactions is determined
by the matrixKe, = K(t — ) = ¢k + Wi = Kp + Wip in the

Specific features of this time dependence are determined byspace ofm-gating statesim,l] In general, this kinetics is

the analytical properties of the Green's functi@itr|¢), which
satisfies eq 21. In the free diffusion model this function can be
obtained analytically without difficulties by the method devel-
oped in ref 11:

1 (1+dg)
8  def

Hence, according to eqs 227 the problem reduces to some
matrix operations and evaluation of the inverse Laplace
transform. In general, this can be done only numerically.
Analytical expressions can be derived only within simple models
of rate fluctuations (see below). Equation 25, however, is very
useful for qualitative analysis of the problem.

For the sake of convenience we will consider the casés of
andm-gating separately.

1. Gated LigandsFor gated ligandsl{gating) the time-
dependent survival probabilitl?(t) for m-molecules is given
by eq 23: P(t) = Py(t), in which the time dependence of the
reaction ratek(t) is determined byj(d/t) (see eqs 17 and 18).
In general, the functiork(t) can be obtained by numerical
calculation. Here we analyze only the most important asymptotic
(att > d¥/D) specific features ok(t).

As it follows from eqs 2427, the long time asymptotic
reaction kinetics is determined by the steady-state rate

G (dle) = Gi(dle) = (38)

>

ko = [k, |0, = 47c” D lim [€[0)]6Gy(dl) 0] =
47d DIO||Ro(k + Gy)'10,0(39)

in which ki = kit — ) = 47d Dio(k + &w) L with Gw =
A/W/D. The long time tail (at > d?/D) of the time-dependent
ratedk(t) = ki(t) — ki can be calculated with eqs 227 using
an approximate expression f@i(r|¢) obtained by expansion
in smallllgi(e) — gwlld < 1:

ok(t) = k() — k., = |0k (t)|0,0 (40)
Here
ok(t) =k — k., = ﬁm koOOWOR:,  (41)

with ®(x) defined in eq 37 an&f; = 4gd D(k + Gw) "t ko, In
accordance with eq 32.

Equations 36 and 41 demonstrate the close relation of the
long time dependencies 6k (t) anddY(t) similar to that in the
theory of diffusion-controlled ungated reactiofis.

Equation 40 shows th&tgating strongly affects the long time
kinetics oki(t). This equation is the generalization of the well-
known expression for the long time asymptotic behavior of
ok(t) in the absence of gating.In general, eq 40 describes the
relaxation ofdk(t) from ok<(t) = K, [{47DV/xDt) ! at rel-
atively smallt < 1ANMII to oks(t) = T[Tk, [{47D/7Dt) 1
att > 1ANMII, where the average is taken over the reactivity
distribution in the equilibriuml-gating state according to
definition 5. The functional form of crossover frodk-(t) to
ok- (t) depends on the specific features of the gating rate matrix
W. Some examples of this form will be analyzed in section V.

nonexponential, however, if the matri&, has well-separated
eigenvalues and the minimum eigenvakjg, corresponding
to the eigenstatpiml] is nonzero, then at fairly long times>
11Kl the kinetics becomes exponential and the rate
Kyo, = | K| 0= 2, Ky + W A0 (42)

In principle, the rateK,(t) depends on time, and this
dependence is typical for diffusion-controlled reactions. At
sufficiently long timest > d4D the time-dependent term
oky(t) = ki(t) — ki Of the total rate can be evaluated similarly
to eq 40.

0Ky (®) = Ky (1) — Koo = G k(D) — ko J2,=
G2, |k2 A, [I(47D/7Dt) (43)

. Analysis shows, however, that if the spectrum of the matrix
W, is continuous near zero (corresponding to the equilibrium
state|Oy0), the reaction kinetics is strongly nonexponential at
long times. Some additional discussion of this effect will be
continued in section V.

Equations 42 and 43 demonstrate the important specific
feature of GRs: in the presencerofgating there is no relation
between parameters of geminate and bulk GRs. For example,
according to eq 34 the total geminate reaction y¥jg= L/r;,
where L is the effective reaction radius. In the absence of
m-gating this radius determines the asymptotict (at ) bulk
reaction rate:k, = 47dDL in agreement with general rules for
diffusion-controlled reaction®®. This relation, however, is not
valid for m-gated reactions as evident from eq 42. Furthermore,
in this case there is no relation between amplitudes of the long-
time asymptotic dependenciék;(t) andY(t), although in some
cases discussed above the long time depend&n¢e ~ Wt
in agreement with that known in the theory of diffusion-
controlled reaction¥®

IV. The Effect of Interaction. Exponential Model

A. Geminate Reactions.In general, in the presence of
interactionU(r) the analytical solution of the SLE (eq 1) is
impossible. However, in the realistic limit of localized potentials
in the shape of a deep well, in whiéh= allgll < 1, wherea
is the Onzager radius defined by the relatjgld(a) = 1, the
SLE (eq 1) can be solved by expansion in sngaif1°In this
limit the reaction kinetics is completely determined by the
probability of staying within the well (cage), which, when pairs
are created in the well, is given by
joo

" de G (e)In,d  (44)

—joo

no= [ d3r|p(r|t)D=%

where|nol= /§ ofr|p(r)0= |0Cand

Gle) = [e + W+ waatfe)] (45)
In eq 45
W=W, +W + W, + w, (46)

is the sum of matrices of gating ratédif andW), the matrix
of cage reaction ratedf = D(d%oe®V D)/ 3 dr r2 e AU0) and
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the cage dissociation rateg = D/(/; dr r—2 AUt 4 dr r?
e AUM) in which re is the radius of the bottom of well.

Equations 45 and 46 show that in the presence of sufficiently
deep potential well the exponential stage of evolution of pairs

for a relatively long period up td ~ tc ~ (wg + [IW[)~1
In(D/wga?) appears, which at > t. is replaced by the inverse
power type one:|n(t)C~ t=32, corresponding to free diffusion
outside the welt®1° This means that the effect of slow rate
fluctuations, for whicHlW, + Wiltc < 1 is properly described

by the free diffusion model, i.e., using the results of section IIl,

whereas in the opposite limit of fast rate fluctuations, wiiéh
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Gle) = (e + W)G() =K e + W)™ (54)
It is clear from eq 53 that the steady-state GR rate
ko = 01k, |0, = (0K MO0 (55)

V. Simple Models for Gating

Formulas derived above in the free diffusion and exponential
(cage) models still require some matrix operations, which cannot

+ Wiilt. > 1, this effect can be treated within the exponential be carried out without specification of the gating mechanism
model. Here we concentrate on the exponential model, which (the form of matricedV, and W). In section V we consider
allows the description of specific features of gated reactions in two simple models in which the matrix operations are performed

the presence of strong interaction.
In the exponential model, evolution of the matr@)g is
described by eq 47:
gg = — Vg (47)

with the initial conditiongg = E. The geminate reaction yield
is written as

Ye(t) = DWW {1 — exp(—\W)]|00=
1 joo _ A A
", de e 1 W, G(e)|0E™ (48)

27i

where
Gye) =Gca=0)= (e +W)* (49)
evidently coincides wittGg(e) in the limit W + Wilte < 1

when the termvgag(e) can be neglected.
Equation 48 is conveniently represented in the form

V() = Y5 — [(t) — W, [ dr ¢(2)] (50)
whereg(t) = 0]exp(\Wt)|00and
Y5 = Y(t — o) = 0]W,G,(0)|0C= [OJW,W *|00 (51)

is the total reaction yield.
Equations 4851 reproduce correctly both limits of fast and

slow fluctuations discussed within the free diffusion model in
section lll. These equations reduce the problem of calculating
the yield Y(t) to matrix operations and the inverse Laplace
transform. For some simple gating models this can be done

analytically (see section V).
B. Bulk Reactions. The kinetics of bulk reactions is

determined by the corresponding matrix, which satisfies eq 52:

§=-Wg+KEe™ (52)

whereW, = W + W, + wy andK_ is the rate of capture into

and some analytical formulas for specific parameters of GR
kinetics are obtained. .

A. Relaxation Time Model. In the RTM the matrice$\i
andW are taken in the form

W =w(§ — P) =wQ (56)

where the projection operatol% and Qj are defined in eq 6,
andwpn andw; are the fluctuation rates of reactivities of the
macromolecule and ligand, respectively. RTM makes it possible
to significantly simplify the expressions for kinetics of geminate
and bulk GRs. The main simplifications result from the special
relation that is valid for the projection operatd?sand Q

F(xP +yQ) = PF(x) + QF(Y)

whereF(x) is any smooth function.

The general expressions obtained in the gating of both ligands
and macromolecules is too cumbersome so that here we restrict
ourselves to analysis of gating in only one kind of reagent:
either ligands j(= ) or macromolecules & m).

1. Geminate Reactions. a. Diffusion Mod&ubstituting
relation 57 into the general formula (eq 30), one obtains the
simple expression for the total yield of the geminate GR in the
free diffusion model:

(57)

A,
YfOO:L:g 1_ Oo (583)
rof 1-q,dA,
Hereq2 = J/w,/D,
P(ico)
A= [dkg————— 58b
o=/ ® 1+ d(xy + o) (580)

andp(ko) is the distribution function of reaction rateg which
for the sake of generality is assumed to be a continuous function
of ko. This formula reproduces all general specific features of
the total yield discussed in section llIA. It can be considered as
a simple and reasonable interpolation formula correctly describ-
ing all general limiting relations discussed above.

RTM also allows significant simplification of the eq 36 for

the cage. The last term in the SLE (eq 52) describes the flux of ¢ long time tail of the yield:

gatedl-molecules into the cage. The initial condition for eq 52,

corresponding to the equilibrium distribution within the well,
is written asji(t = 0) = 62 = (KJ/wa)E. The general theo1°

shows that in the presence of the potential well (cage) the

expression (eq 23) for the survival probability is still valid, but
the GR rate is given by

k) =5= [ de e 'mWGEAOE  (53)

1
27

oY(t) = [k IT + (00]k IT|00— k IT)d(wt)]

(59)
where the functiond(x) is defined by eq 371 = [O|I1|0Cis
the escaping probability in the equilibrium gating state (for

definition see eq 36), ankl, = [0]k.|OL It is important to note
that in RTMK, = k. (see eq 61) and thud = II-.

1
(47D)~ 7Dt
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b. Cage (Exponential) Moddrormulas similar to eqs 58 and
59 can also be obtained in the exponential model. In particular,
the total yield of GR

WaTo

1-w,z,

Ye=1-

00

. _ p(W,)
with To—fd\/\/rm

(60)

where « = m,| and p(W;) is the (continuous) distribution
function of reaction rates. Equation 60, similar to eq 58,
reproduces all general specific features of the total yield
mentioned in section V.

As for the time dependence of the yielt), according to eq
48 calculation of this dependence reduces to evaluating the
average of the exponential operator over the equilibrium gating
state. This problem will be discussed in detail in section VA.2b

Shushin

exponential operator, as seen in eq 53. The methods of
calculation of this average as well as its dependence on the
specific features oM andW; are discussed below.

b. Gated Macromolecule#s pointed out in the beginning
of this section, irm-gating the most important nonexponential
behavior of kinetics of bulk GRs results from the spread of the
steady-state rates determined by the mattix= K(t — «) =
cke + Wm = Kp + Wy, (See eq 26). Neglecting the transient
part of GR kinetics, we can write the expression for survival
probability asP(t) = Oy exp—K.t)|0nl] RTM allows the
analysis of some interesting featuresRff).

In RTM the Laplace transform

P(e) = Oy)(e — K.) 10n= 7(e)/[1 — Wyz(€)]  (63)

where

(see eq 66). Here we only present the main results. In accordance

with the general statement of section 1B the characteristic
features of time behavior of this average is determined by the
spectrum of the operatV. The definition (eq 46) shows that
all eigenvalues oW are nonzero; thus, at long times the yield
Y(t) decreases exponentiallytat 1Ay However, the behavior

of Y(t) at smaller timeg < 1/wy depends on specific features
of the spectrum ofV in the region of eigenvalues larger than
Wg.

2. Bulk Reactions.The general analysis in section 1IB
demonstrates that the kinetics of bulk GRs is essentially different
for the gated ligandd-gating) and macromoleculesi{gating)®
The kinetics of-GRs is exponential @t> d?/D. The transient

Po(Ky)

Fwatk (64)

7(e) = [ dk,

in which po(kj) = [On|jJ|0nUis the distribution function of
eigenvalues (reaction rates)kf = ck. in the equilibrium state
|0 In general, eq 63 predicts the exponential asymptotic
behavior of P(t) with the rate equal to the lowest nonzero
(positive) root of the equatiowmr(—¢) — 1 = 0.

Equations 63 and 64 show that the specific featureB(9f
are determined by the distribution functiqr(k). We have
already mentioned that the functid?(t) can be calculated
analytically?8 in the markovian two-state model of gating, which

time dependence of the rate constant shows itself in this caseis a particular case of the proposed RTM. The general RTM
as a deviation of bulk-GR kinetics from the exponential at  (eq 56), however, enables one to obtain the analytical expression
finite times. As form-GRs, the kinetics of these reactions is for P(t) in some more realistic models assuming a continuum

significantly nonexponential at all times. In that case the
contribution of the transient nonexponential part of the process
can hardly be distinguished from the main nonexponential
kinetics describingn-GRs. In other words calculation of the
small asymptotic transient part of kinetics eq 41 is nearly useless
for m-GRs, and fom-gating we restrict ourselves to evaluating
only the long time behavior d®(t) determined byK., = K(t —

) (defined in eq 26) both in the diffusion and cage (exponen-
tial) models.

a. Gated Ligands. 1. Diffusion Modéh I-gating the steady-
state rate constant of bulk GR is determined by eq 33 which
predicts in RTM

k., = K, = 4nDL
with L = d[1 — Ad/(1 — ¢ dAg)], in agreement with eq 58a.
The parameten, is given by eq 58b but Withg replaced by
o’ = /w/D. The expression (eq 36) for the long taki(t) is
also represented within RTM in very simple form

(61)

ok(t) = K., + (01K.|00- K2)P(wt)] (62)

1
(4nD)V/ 7Dt [

where®(x) is defined by eq 37. In accordance with the remark
in section 11l.B1 and definition (eq 33), the term in square
brackets in eq 62 decreases frdBikZ,|00= K. [to k2, =
Kol < B0

2. Cage ModelIn this model the asymptotic (at— )
steady-state rate of the bulk GR is written as (eq §5)=
K.Ye, whereYe is the total yield of geminate GR given by eq
60 in whichw, should be replaced bwi. Evaluation of the
time-dependent pattk(t) reduces to the average of the matrix

of gating states.
Here we analyze one of these models in which the distribution
function

(1/7)
k,+ K

Ko

k

Po(k) = (65)

This strange (at first sight) distribution function is actually
similar to that implied in the model discussed in refs 6 and 7.
The model suggests th&t = %, wheres is the Gaussian
fluctuating parameter for which the distribution functipg(s)
is naturally Gaussianpg(s) = exp[—(s/sp)?]. In this sparam-
etrization k = s?) the model function (eq 65) corresponds to
the Lorentzian distribution functionpe(s) = (s + 91 with

Ko

Ca?é;ation of the function(e) with the use ofg(K) (eq 65)
and the subsequent inverse Laplace transformation yield

f+1,

Jlr . e [f, & erfef,v7) — f_€"" erfc_v/7)] (66)
+

P = e +

f

wheref, = \/1+(k0/4wm) + ko4, vo=1—f2 <1, and
7 = Wrt. Note that the long time behavior B{t) (for foz > 1)
is determined by the first term in eq 66; therefore, the long
time tail of kinetics is exponential with the rat@nvo < Wn.
The ratewmwp is especially small foko/wm < 1: Wmvo = Wn,
A Ko/dw,,, < Wi In the opposite case/wr, > 1, we have, >
f_; therefore, the kinetics is, in fact, determined by the second
term in eq 66, whose amplitude is much larger than that of the
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first term, although the behavior is still nearly exponentig(t)
= 1732 exp(—wyt). Time dependence of the preexponential
factor appears to be determined by the behavigp@) at small
k. In particular, forpo(k) = k=” (v > 0), eq 63 predict®(t) =
=) exp(—wit).

B. Single Reactive Channel ModelThe SRCM assumes
that only one statérlis reactive, i.e.,

ko=1«,|r,08| and W, =w]|r,05,|(v=m,1) (67)

It is convenient for our further discussion to introduce the

distribution function of gating rates:

mV|JV|:DJ]V|r’VD

The normalization condition fap,(w;) is fulfilled automati-
Ca"y becausi; pv(\NJ) = zjmvuvmﬂu”ﬂ: w,r,0=1

For further analysis of the problems it is convenient to
represent the distribution functigm(w) in the form

p,(W) = (68)

P,(W) = pod(W) + (1 = po)py(w) (69)

in which pj(w) is the distribution of nonzero gating rates

(assumed to be continuous). Similar to the definition (eq 33),

we introduce a special definition for the matrix element
0|F(W)|rOwhich is actually the average &f{w) over p,(w):

EIFW)IrC= FQ= [ dw p,(W)F(w) =
PoF(0) + (1= po) f dw plw)F(w) (70)

1. Geminate ReactionH.is clear that the model (eq 66) leads
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B W, /W
== Po 1+ pO(Wr/ Wd) + (1 - pO)Wrtn

(75)

with 7, = / dw plw)(wg + w)~L In the limit of slow
relaxation, wherr, ~ 1Ay is determined by the rates < wyg,

eq 75 reduces to the evident expressiin= pow/(wq + W),
which means that the yield is controlled by the only reactive
channel whose statistical weightps.

The transient part of geminate reaction kinetics is given by
eq 50 and includes averaging of exponential matrixp(t).
Specific features of this average and thus the transient part of
the yield are discussed in section VB2.

2. Bulk ReactionsSimilar to the consideration in RTM, in
SRCM we will discuss separately the gated ligands and
macromolecules, and fon-gating we will only analyze the long
time behavior ofP(t) determined byK., = K(t — ).

a. Gated Ligands. 1. Diffusion ModeCalculation of the
steady-state rate #fGR with the use of eq 30 gives

=K, =

whereL = po;d?(1 + «; dA;) and A, is defined in eq 71.
In SRCM simple analytical can also be derived for the long
time tail (eq 41):

47DL (76)

Ok(t) = K2 O(t) (77)

1
(47D)v 7Dt

where the functior®(t) is defined by eq 73. It was mentioned
earlier that®(t) — 1 ast — . This means that, in agreement
with the general statement in section 1B, at very large times

to matrix expressions similar to those discussed in section VA t > 11W,lI, the relation foroki(t) is predicted by the theot
from mathematical point of view; in these matrices some terms for the ungated reactions with the steady-statekiatgiven by

are proportional to the projection operator on one of states.

Therefore SRCM permits the significant simplification of
general matrix expression for RG kinetics similar to those
derived in RTM.

a. Diffusion Model.The expression for the total yield

Podli, )

_L _ o
Y= 1+ de, A,

(=r=1 (d
i T
whereA; = [A[Jis the average defined by eq 70 in whilfw)
=1+ dvwD)?!
In SRCM the general expression (eq 36) for the long time
tail 0Y/(t) can also be represented in analytical form:

(71)

SY(t) = m k. (1 - rE G)(t)) (72)
with k. = 47DL and
Ot) = 1+ py (1 — PO, (1) (73)
in which
0, = [ dw FWA WD) (74)

It is easily seen tha®,(t) — 0 and®(t) — 1 ast — « because
of the small weight of the equilibrium state in the distribution
function pl(w). The asymptotic behavior aBy(t) at larget
depends on specific features of the functjgw) at smallw.

b. Cage (Exponential) Moddh this model for the total yield
of GR SRCM gives

eq 76. SRCM, however, enables one to obtain behaddt)
at large times independently of the relation betweeand
LWL

2. Cage (Exponential) ModeAs in RTM, in SRCM the
steady-state rate ®fGR is proportional to the yield® (eq 75)
of geminate GR:ki.. = K.YS. The time-dependent pak(t) is
determined by the average matrix exponential operator as it
follows from eq 53. The main features of this kind of average
will be analyzed somewhat later in the discussion of kinetics
of mGRs.

b. Gated Macromoleculesn accordance with the general
consideration of section 1IB the long time behavior of the
survival probability for gated macromolecules is givenRi)
= [0 exp(Keot)|0nl whereKe, = K(t — ®) = Ky + Wi,
regardless of the model of relative motion. For simplicity we
assume that, = ckn = k|r|, although, strictly speaking, it
is not implied by eq 67. This model allows the analysis of
specific features oP(t) within some general assumptions on
behavior ofp(w).

Simple calculation for the Laplace transfofP(e) gives:

-1
Pe) = Dyl(e — R) 1000= €+ k —p;o)krr (©)
(78)
where
7€) = [ iy, PRW, (e + W) (79)

In principle, the kineticsP(t) can be obtained numerically
for any functionz,(¢) by inverse Laplace transform &e) (eq
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78). However, here we analyze only the qualitative specific of MFEs. Therefore the above-mentioned method of solving

features ofP(t). the SLE in the matrix form can be applied straightforwardly to
(a) If Tn(e) is the analytic function o€ possessing a number the analysis of GRs. This method is described comprehensively
of poles [in particular, for a finite number of gating state&) in refs 10 and 11. In our work, we have restricted ourselves to
= Yj wjl(e + ¢)], then the formula predicts the exponential the presentation and application of final formulas.
long time behavior of(t): In section Il with this method we obtained some general
expressions for GR kinetics that seem to be useful for the
Pe(t) ~ exp(keh) (80) analysis of kinetics. Analysis of kinetics in the free diffusion

. . ~and exponential (cage) models, carried out in sections Ill and
with the rate equal to the lowest positive root of the equation IV, has demonstrated the great capabilities of the proposed
method that allows the derivation of expressions for observables

k,— k. Po =0 (81) in the compact matrix form. These expressions were used in

1+ (1 — pokr(—ko section V to obtain simple analytical formulas within the two

markovian models of gating, RTM and SRCM.

In general, this root must be obtained numerica"y. In some To Clarify some important points of the analysis performed,
limits, however, it can be found analytically. we would like to add some general comments on our results.
(b) Itis evident that if 1 po < 1, so that (I~ po)kizn(—k) (1) Expressions 36 and 40 for the transient parts of diffusion-
<1, thenke = pokr. o controlled geminate and bulk GRs were obtained for the first
() If po << 1 andzn(e) is finite ate = O, with high accuracy e These formulas clearly reveal the above-mentioned
one can setn(c) ~ 7(0) = 7o, in €q 78 forP(e) thus amiving 54y antages of the method proposed in refs 10 and 11. This
at the exponential reaction kinetics (eq 80) with method has enabled us to derive the formulas without any

ok assumptions based on the mechanism of gating (the form of
k,= 0 dem P (W)W, (82) Wy). The expressions obtained generalize the corresponding
1+kt, expressions for the transient part of reaction kinetics known in

_ o _ _ the theory of diffusion-controlled, ungated reactions. They show
(d) If po < 1 andzn(e) is a finite but nonanalytic function of  that gating strongly interferes with the diffusion-controlled

€ ate = 0, for examplega(e — 0) = 70 + 7a(ele1)® with 0 < relaxation of the spatial distribution function of reagents giving
o < 1, the exponential asymptotics (eq 80) is |ntermeij+|ate. At rise to strong change of the long time tail of GRs kinetics. These
very larget it is replaced by the final dependerief) ~ t~(+. general matrix expressions are reduced to very simple analytical
This is because in this case at smalP(¢) is represented as  gnes in RTM and SRCM.
Kt 1 (2) In the presence of the attractive interaction potential well,
Pe) = |e + ke + ke 1 (ele))” (83) when the long-lived intermediate state in the well is formed,
1+ ko the statistics of re-encounters and thus reaction kinetics sub-

_ _ ~ stantially changé®1°At a relatively small initial time it becomes
It is easy to see that the inverse Laplace transform of this exponential and then it changes by conventional inverse power
function gives the above-mentioned inverse power type long one. The effect of gating appears to be very sensitive to the

time tail of P(t). statistics of re-encounters and, in particular, at relatively short
(e) If the distribution functiorp{(wm) is singular atwm — 0: times the universal relations (egs 36 and 40) should be replaced
Pl(Wim) = w..* with 0 < o < 1; 7n(€) is also singular a¢ — O: by eqgs 50 and 53, corresponding to the exponential model. In
To(€) = € * Such a behavior ofy(¢) leads to the strongly  our work we did not analyze in detail the long time tail of
nonexponential long time tail d¥(t): P(t) = P-(t) =t*L The transient kinetics predicted by the exponential model. The

above-mentioned exponential kinetics is observed only at problem was reduced to evaluating the average of matrix
relatively short time¢ < t-, wheret- is defined by the relation ~ exponential functions. Within the considered models of gating
Pe(t) = P (tx).18:19 it can be done with the use of formulas describing bulk reaction
kinetics, which is determined by the averages of similar types.
(3) Most recent theoretical works concentrate on analysis of
In this work we proposed a general method to describe the gating either in the model based on the assumption the first-
effect of gating on the kinetics of stochastically gated, diffusion- order reaction ratd(t) = k[s%(t)], where §(t) is the Gaussian
controlled reactions. The method is based on application of the Stochastic process, or in the markovian two-state modk.
theory of MFEs on liquid-phase chemical reactiéh&t The The main difficulty in the treatment of first-order reactions lies
treatment with MFEs reduces the solution of the SLE which is in averaging the exponential functionaixp[/* dr k(z)]l over
actually a system of coupled differential equations of the second fluctuations of the rate constakit). The markovian RTM and
order2-14 One of important ideas of the theory of MFEs is to SRCM proposed in section V essentially extend the number of
solve the complicated SLEs (for the spin-density matrix) just analytically solvable models for these first-order GRs. They
in the matrix form without any assumptions on mechanisms of permit the detailed analysis of some interesting specific features
transitions between spin states of reacting molecules, i.e., theof GRs. In particular, in the most reasonable case of smooth
mathematical form of the coupling of differential equations. It (analytic) behavior of probability distributionm(k) (in RTM)
appears to be much easier to analyze these mechanisms in thend pj(w) (in SRCM) the long time kinetics of bulk GRs is
final matrix expressions for observables. The fairly simple and exponential with the rate obtained from general expressions 63
general method of solution of the SLE developed in refs 10 and 78, respectively. However, (if(w) is singular at smalv
and 11 is applied quite successfully in the theory of MFEs.  SRCM predicts strongly nonexponential long time tail of kinetics
The basic eq 1, which describes the effect of gating on P(t) (see discussion in the end of sections VA.2 and VB.2).
reaction kinetics in the markovian approximation for reaction New analytically solvable models such as eqgs 65 and 83 are of
rate fluctuations, is very similar to the SLE used in the theory special interest because they make it possible to describe the

VI. Discussion
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