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The kinetics of diffusion-controlled, stochastically gated biochemical reactions is analyzed within the markovian
approximation for stochastic fluctuations of reaction rate. With the use of methods developed in the theory
of magnetic field effects on chemical reactions, several general expressions for reaction rate and transient
kinetics of geminate and bulk reactions are derived. In particular, it is shown that gating strongly manifests
itself not only in steady-state reaction rates but also in the long time tail of kinetics. Specific features of gated
reactions in the presence of attractive potential, resulting in the long-lived intermediate state (cage), are
discussed. Two simple markovian models of gating are considered which allow significant simplification of
the general expressions obtained. Within these models simple analytical formulas for reaction rate and reaction
kinetics are derived and analyzed in detail.

I. Introduction

The well-known important feature of some biochemical
reactions, such as protein-ligand binding, is the dependence
of reaction rates on conformal transitions in reacting molecules.1

These transitions give rise to fluctuations of reaction rates
(gating). Investigations demonstrate that rate fluctuations strongly
manifest themselves in kinetics of these so-called gated reactions
(GRs).2-4

Possible manifestations of fluctuating reactivity in kinetics
of GRs have been analyzed theoretically in many recent
articles.5-9 Naturally, the most direct methods of analysis are
based on numerical solution of the corresponding equation.1,5

Unfortunately, these methods are not very informative and do
not give deep insight into the problem because of the numerous
parameters in the problem under study. In this situation the
analysis within simple analytically solvable models is of great
value.

One such model, very popular at present, is the model of the
first-order reaction whose time-dependent reaction ratek(t) ∼
k[s2(t)], where s(t) is a Gaussian stochastic variable which
represents the effect of conformal transitions on reactivity.6,7

This model has made it possible to reveal some interesting
properties of GRs. However, it is rather limited, which implies
the above-mentioned fairly special type of kinetics and fluctua-
tions of k(t).

Several works discuss the specific features of GRs within
the markovian approximation for reactivity fluctuations.4,5,8,9

This approximation has an advantage because it enables one to
analyze the effect of gating on real nonexponential kinetics of
diffusion-controlled reactions. In particular, this approach al-
lowed Szabo and Zhou5 to show that the effects of the gating
of ligands and proteins on reaction kinetics are surprisingly
different. Some details of these effects were analyzed in ref 8
within the simple markovian two-state model. Unfortunately,
this model is clearly oversimplified. It is unable to take into
account important features of realistic gating [for example, the
large number (continuum) of gating states involved in the
process, possible complicated spectrum of gating rates that
cannot be approximated by the only rate, etc.]. They can strongly
manifest themselves in the kinetics of GRs.

This work describes the general method of the analytical
treatment of diffusion-controlled GRs within markovian ap-
proximation for gating. From mathematical and physical points
of view, the theory of GRs is very close to the theory of
magnetic field effects (MFEs) on chemical reactions of para-
magnetic particles.10,11The main mechanism of MFEs is based
on the assumption that the rates of reaction of these particles
are spin selective,12,13 i.e., reaction rates depend on the total
spin (internal state) of pairs of reacting particles. A similar idea
on the dependence of reactivity on internal states of reacting
pairs underlies the theory of diffusion-controlled GRs.3,5

The treatment of MFEs reduces to solving the stochastic
Liouville equation (SLE),12-14 which is actually the system of
a large number of differential equations represented in the matrix
form. The general kinetic equation that describes GRs3,5 is a
particular case of the SLE corresponding to the absence of
quantum transitions. This means that a lot of theoretical results
obtained in the strongly developed theory of MFEs10,11 can be
straightforwardly applied to the analysis of GR kinetics.

The methods proposed in refs 10 and 11 are based on the
idea of solving the SLE directly in the matrix form without
any assumptions on the mechanism of spin-selective transitions
during the reactions. It is shown that the general matrix
expressions for observables obtained by these methods appear
to be very useful for qualitative analysis of results. In particular,
this approach helps to find general relations between observables
which are valid irrespective of the mechanisms of the transitions.
The obtained expressions also enable one to apply some models
for transitions in which these expressions can be reduced to
simple analytical formulas.

The main purpose of this work is to analyze some specific
features of diffusion-controlled GRs by the methods of the
theory of MFEs. These methods have permitted the elucidation
of specific properties of GR kinetics. In particular, simple matrix
expressions are obtained for the yield of geminate and bulk GR
in the absence and presence of interparticle interaction potential.
General analysis of the specific features of kinetics is carried
out using these expressions. In the relaxation time model (RTM)
and single reactive channel model (SRCM) well-known in the
theory of MFE, these matrix expressions are reduced to simple
analytical formulas for reaction kinetics.
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II. General Formulation

For the convenience of the presentation and introduction of
notation, we start with geminate GRs.

A. Geminate Reactions.The kinetics of stochastically gated,
diffusion-controlled reactions of proteins, hereafter called
macromolecule (m), with ligand (l) is generally characterized
by the vectors of parameters. These parameters are different
for geminate and bulk reactions. The kinetics of geminate
reactions is completely described by the vector|p(r,t)〉 of
probabilities to find theml-pair at a distancer between reagents
and in gating states|mµ〉 and |lλ〉 of the macromolecule and
ligand, respectively. In our discussion we use the Dirac’s bra-
ket notation for gating states. In particular, expansion of|p(r,t)〉
in the complete bases of gating states is written as:|p(r,t)〉 )
∑µ,νpµν(r,t)|mµ〉|lλ〉.

The evolution of|p(r,t)〉 is completely determined by the
Green’s functionĝg(r,r′|t) of the SLE-type kinetic equation

where|pg(r,t)〉 ) |p(r,t ) 0)〉.
In eq 1

(with â ) 1/kT) is the Smoluchowsky operator that controls
diffusive relative motion of theml-pair with the diffusion
coefficientsD in the interaction potentialU(r), which is assumed
to be spherically symmetric. The matrixŴg ) Ŵm + Ŵl

describes the markovian fluctuations of the reaction rate caused
by gating in macromolecules (Ŵm) and ligands (Ŵl).

For the convenience of our further discussion we need special
notation for the equilibrium eigenvectors

of the matrixesŴm andŴl: Ŵj|0j〉 ) 〈0j|Ŵj ) 0 (j ) m, l). In
eq 4,pjν is the equilibrium probability to find the system in the
gating stateν of the moleculej. Note that|0j〉 * 〈0j|+ because
the matrixesŴm andŴl are nonhermitian. Also, according to
the definition (eq 4)pjν ) 〈0j|jν〉〈jν|0j〉. This relation enables
one to interpret the matrix element〈0j|Â|0j〉 of any matrix
〈ν|Â|ν′〉 ) Aνδνν′ diagonal in the basis of gating states as an
average over the distributionpjν.

Naturally, for the continuous distribution of eigenvaluesν
the sum in eq 5 is replaced by the integral.

We also introduce the projection operators

in which Êj is the unity matrix in the space ofj-gating states.
The Green’s function satisfies the reactive boundary condition

where the reactivity matrixκ̂0 is diagonal in the|ml〉-basis of
gating states.

The initial condition forĝg(r,r′|t) is

whereÊ ) ∑λ,µ|mµ〉|lλ〉〈lλ|〈mµ| ) Êm X Êl is the unity matrix in
the space of gating states that is the direct product of unity
matrixes inm- and l-spaces.

Most of kinetic parameters of GRs can easily be represented
in terms of the Laplace transform ofĝ:

which obeys the steady-state SLE

where

In geminate reaction the pair of reacting molecules is assumed
to be formed at a distanceri g d in the equilibrium gating state
|0〉 ) |0m〉|0l〉, i.e.,

The kinetics of geminate reaction is determined by the time-
dependentml-reaction yield

It is evident from eq 13 that the total reaction yieldY(t f ∞)
is given by

Note that eqs 13 and 14 are very similar to those obtained in
the theory of MFEs.10,11

Equations 13 and 14 reproduce the expected behavior ofY(t)
both in the limit of slow and fast gating. In the slow gating
limit, when the characteristic gating rates|Ŵm| and |Ŵl| are
smaller than the characteristic reaction times, one can setq̂ )

x(ε+Ŵg)/D ≈ xε/D and reduce the SLE (eq 10) to a system
of uncoupled equations. According to eq 13 in this caseY(t) is
the yield averaged over independent gating states. In the opposite
limit of fast gating in the SLE (eq 9) one can use the
approximationsq̂ ) x(ε+Ŵg)/D ≈ xε/D |0〉〈0| and κ̂0 )
〈0|κ̂0|0〉|0〉〈0| ) 〈κ0〉0|0〉〈0|, where〈κ0〉0 ) ∑µ,λκ0µλpµ

mpλ
l is the

average reactivity of theml-pair (see also eq 5) in whichκ0µλ
) 〈mµ|〈lλ|κ̂0|lλ〉|mµ〉. In other words, in the fast gating limit the
kinetics of the gated reaction reduces to that of the reaction
without gating, but corresponding to the average reactivity〈k0〉0

of the pair. Some specific properties of geminate reaction
kinetics are discussed below in two realistic models of relative
motion of molecules.

B. Bulk Reactions. For bulk GRs the initial condition
corresponds to the delocalized spatial distribution function of
ligandspb(r) in the equilibrium gating state|0〉 ) |0m〉|0l〉:

ĝg(r,r′|t ) 0) ) ĝg
0(r,r′) ) Êδ(r - r′)/(4πrr ′) (8)

Ĝg(r,r′|ε) ) ∫0

∞
dt ĝg(r,r′|t) e-st (9)

(q̂2 - L̂ )Gg ) ĝg
0/D (10)

q̂ ) x(ε + Ŵm + Ŵl)/D (11)

|p(r,t ) 0)〉 ) |pg(r)〉 ) 1

4πri
2

δ(r - ri)|0〉 (12)

Y(t) ) ∫0

t
dτ 〈0|κ̂0|p(d,τ)〉 )

1
2πi

{4πd2 ∫-i∞

i∞
dεε

-1 〈0|κ̂0Ĝg(d,ri|ε)|0〉 est} (13)

Y(t f ∞) ) Y∞ ) 4πd2 〈0|κ̂0Ĝg(d,ri|0)|0〉 (14)

|p(r,t ) 0)〉 ) |pb(r)〉 ) clpb(r)|0〉 (15)

ĝ̆g ) D[L̂ - (Ŵm + Ŵl)/D]ĝg ) D(L̂ - Ŵg/D)ĝg (1)

|p(r,t)〉 ) ∫d3r′ĝg(r,r′|t)|pg(r′)〉 (2)

L̂ ) ∇(∇ + â∇U) (3)

|0j〉 ) ∑
ν

pjν|jν〉 and 〈0j| ) ∑
ν

〈jν|, (j ) m, l) (4)

〈0j|Â|0j〉 ) 〈A〉0 ) ∑
ν

Aνpjν (5)

P̂j ) |0j〉〈0j| and Q̂j ) Êj - P̂j (j ) m, l) (6)

∂ĝg/∂r|r)d ) κ̂0ĝg (7)
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wherecl is the bulk concentration of ligands. In our discussion
we will assume the thermal initial distribution functionspb(r)
) exp[-âU(r)].

The kinetics of bulk GRs is characterized by the survival
probability P(t) of m-molecules. In the pair approximation the
method of calculation ofP(t) for reacting molecules without
internal degrees of freedom is well-known15 and quite simple.
The problem of proper treatment of internal degrees of freedom
within the pair approximation is solved in the theory of
MFEs.11,16The corresponding extension of the method leads to
the expression forP(t) in terms of the solution of the SLE similar
to eq 1, but not the same. The analysis performed in ref 11,
however, concerns reactions that lead to the simultaneous
disappearance of both reacting molecules and the concentrations
of both molecules are comparable. At the same time, in the
considered reaction of macromolecule (m), whose concentration
is low, with ligands (l) the m-molecule can be approximately
considered as a sink forl-molecules. In this case some
modification of the method proposed in ref 11 is required.

Following ref 11 let us treat the reaction of onem-molecule
with l-molecules, distributed over the volume with the above-
mentioned distribution vector|p(r,t ) 0)〉, as a sequence ofml-
encounters which are uncorrelated in time for differentl-mol-
ecules. It is important to point out that the effect ofl- and
m-gating transitions should be treated in different way. First,
we take into account onlyl-gating and evaluate the correspond-
ing survival probabilityPl(t). In this case the average contribu-
tion of the encounter with onel-molecule toPl(t) is given by

whereV is the volume of the system and

is the average time-dependent reaction rate which is determined
by the reaction rate matrix

This matrix is expressed in terms of the Green’s function
ĝl(r/t) satisfying the SLE

with the initial condition

or in terms of the corresponding Laplace transformĜ(d|ε) that
obeys the corresponding steady-state SLE

Contribution of encounters with otherl-molecules toPl(t) is
similar to eq 16. These contributions can be summed up easily
on the assumption that the blips of the reaction ratek(t) caused
by encounters with differentl-molecules are uncorrelated. In
so doing the survival probability resulting fromn uncorrelated
ml-encounters is given by

and therefore in the limitn f ∞, V f ∞, but n/V ) cl,

Equation 23 describes the reaction kinetics forl-gating. The
additional effect of fluctuations of the reaction ratek(t) caused
by markovianm-gating transitions can be described with the
use of the well-known method of averaging of exponential
functionals depending on markovian fluctuating parameters.12-14

In our particular case the fluctuating parameter is the reactivity
κ0. This method enables one to reduce the problem of averaging
of these functionals and evaluating the kineticsP(t) in the
presence ofm-gating to solution of the SLE:

where theR̂(t) is the matrix in them-gating space|mµ〉 that
satisfies the SLE

where

and

is the matrix of time-dependent reaction rates diagonal in the
m-gating space. For each particularµ the ratekµ is calculated
by formulas 17 through 20, i.e., the effect ofl-gating is
completely incorporated inkµ. It is clear that in the absence of
l-gating k̂(t) ) 4πd2 κ̂0ĝl(d|t).

The expression in eq 24 coincides with that obtained in ref
5. Notice, however, that in ref 5 this formula is derived by the
complicated method of solving truncated systems of equations
for reduced distribution functions of high order. The truncation
was made within the superposition approximation for the triplet
distribution function. The obtained nonlinear equation for the
pair distribution function is then reduced to eq 25 in some
additional approximation whose accuracy is in fact uncontrolled.
The above-mentioned analysis has shown that the rigorous
derivation is actually much simpler and does not appeal to any
properties of the triplet and higher order distribution functions
representing many-particle (three and more) correlations. The
expression (eq 24) is easily and rigorously derived in the pair
approximation.

Now let us briefly analyze the general specific features of
the bulk reaction kinetics predicted by eqs 24 through 26. It is
clear that these equations reproduce the limiting behavior of
kinetics expected from the physical point of view. In particular,
in the limit of fast gating transitions when|Ŵm| . |k̂|, one
can use approximationclk̂(t) + Ŵm ≈ cl〈0m|k̂(t)|0m〉|0m〉〈0m|, i.e.,
in this limit the kinetics of the bulk reaction reduces to that of
reaction without gating corresponding to the average reactivity.
In the opposite limit |Ŵm| , |k̂|, eq 24 describes the
nonexponential kinetics of reaction in the uncoupled gating states
with different reactivities.

In general, if the matrixK̂∞ ) K̂(t f ∞) ) K̂b + Ŵm, in
which K̂b ) clk̂∞ ) clk̂(t f ∞) is the steady-state reaction rate
matrix, has the lowest nonzero eigenvalueKλ∞, corresponding
to the lowest eigenstate|λm〉, the long time asymptotic reaction
kinetics is exponential:

Pl
(1)(t) ) 1 - 1

V∫0

t
dτ k(τ) (16)

k(t) ) 〈0l|k̂l(t)|0l〉 (17)

k̂l(t) ) 4πd2
κ̂0ĝl(d|t) ) 1

2πi
[4πd2

κ̂0 ∫-i∞

i∞
dε Ĝl(d|ε) est]

(18)

ĝ̆l ) D(L̂ - Ŵl/D)ĝl (19)

ĝl(r|t ) 0) ) ĝl
0 ) pb(r)Êl (20)

(q̂l
2 - L̂ )Gl ) ĝl

0/D with q̂l ) x(ε + Ŵl)/D (21)

Pl
(n) ) [1 - 1

V∫0

t
dτ k(τ)]n

(22)

Pl(t) ) lim
nf∞

Pl
(n)(t) ) exp[-cl ∫0

t
dτ k(τ)] (23)

P(t) ) 〈0m|R̂(t)|0m〉 (24)

R̂̇ ) -K̂(t)R̂ (25)

K̂(t) ) clk̂(t) + Ŵm (26)

k̂(t) ) ∑
µ

kµ|mµ〉〈mµ| ) 4πd2 〈0l|κ̂0ĝl(d|t)|0l〉 (27)
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wherepm ) 〈0m|λm〉〈λm|0m〉 is the weight (probability) of the
rateKλ∞ ) 〈λm|K̂∞|λm〉. If, however, the eigenvalues ofK̂∞ are
continuously distributed around zero, the kineticsP(t) becomes
strongly nonexponential (see section V).

Additional analysis of the various limits of eq 24 is made
below within realistic models of relative motion.

III. Free Diffusion

The problem of the analytic solution of SLEs (eqs 1 and 10)
is essentially simplified in the absence of interaction potential:
U(r) ) 0. In particular, the powerful method of analytical
solution of the steady-state SLE (eq 10) was proposed.10,11We
are not going to discuss the method, which was presented and
thoroughly analyzed in refs 10 and 11, but analyze the final
formulas.

A. Geminate Reactions.In geminate reactions the effects
of l- andm-gating on reaction kinetics are similar and can be
treated simultaneously. The method proposed in refs 10 and 11
gives the following expression for the matrixĜg (see eq 8):

whereΓ̂ ) (q̂ + κ̂)-1 (q̂ - κ̂) exp(-q̂∆) with q̂ defined by eq
11, κ̂ ) κ̂0 + 1/d, and∆ ) ri - d. Substituting eq 29 into eq
13 we get the final result for the yieldY(t) in terms of the inverse
Laplace transform. Equations 13 and 29 enable one to perform
general analysis of geminate GRs. The final formulas are closely
related to those derived in the MFE theory.10,11

For the initial state (eq 12) the expression for the reaction
yield is written as:

This formula shows that in strong reactivity|κ̂0| . 1/d, |q̂|
the gating effect is weak. The strongest effect is expected in
the opposite limit of weak reactivity, when|κ̂0| , 1/d and
reactivity can be treated pertubatively. Specific features of the
yield in the more complicated intermediate case of|κ̂0| ∼ |q̂|
. 1/d will be analyzed in section V in the relaxation time model.

According to eq 29, the total reaction yieldY∞
f (see eq 14) is

given by

and q̂W ) q̂(ε ) 0) ) xŴg/D.
For our further discussion it is convenient to introduce two

matrixes of effective reaction radii

and corresponding reaction rates

The matrices k̂∞ and k̂∞
/ are composed of bimolecular

reaction rates att f ∞ (see below). In principle,k̂∞ * k̂∞
/ and

(k̂∞)T * k̂∞
/ because the gating rate matricesŴl and Ŵm

generally are not hermitian. For slow gating, however, when
|qWd| , 1, L̂ ≈ L̂* ) L̂ ) d(κ̂0/κ̂) and thusk̂∞ ≈ k̂∞

/ ) 4πDL̂.

With the use of definitions 32 and 33, one can represent the
yield Y ∞

f in the formY ∞
f ) (1/ri)〈0|L̂|0〉.

In agreement with the general statement mentioned above,
for strong reactivity|κ̂0| . 1/d, |q̂w| the yieldY∞(ri) ≈ d/ri is
practically independent of gating transitions, whereas for weak
reactivity Y∞(ri) ≈ (d2/ri)〈0|κ̂0|0〉, where 〈0|κ̂0|10〉 ) 〈κ0〉0 )
∑µ,λκ0µλpµ

mpλ
l is the average reactivity.

Naturally, eq 31 reproduces the results expected in the fast-
and slow-rate fluctuation limits:

(1). In the fast fluctuations limit, when all eigenvalues ofŴg

) Ŵm + Ŵl, except the equilibrium one (which is equal to zero),
are large enough to ensure inequality|q̂W| . |κ̂|, 1/(κ̂ + q̂w)
≈ |0〉〈0|/〈0|κ̂|0〉 and thus

Clearly in this limit the yield (eq 34) coincides with that
predicted for the reaction of particles with the average reactivity
〈0|κ̂0|0〉 ) 〈κ0〉0 created at a distanceri.15

(2). In the opposite limit of slow fluctuations, when|q̂W| ,
|κ̂0|,

which is expected for reagents with a set of uncoupled states
with different reactivity.

(3). As for the time dependence of the yieldY(t), in the limit
of fast gating this dependence is the same as for reagents with
nonfluctuating average reactivity (see eq 34). In the slow gating
limit the time dependence can be determined by considering
the gated reaction as a set of independent reactions with
reactivitiesκ0µλ.

A simple formula can be obtained for the long time tail of
δY(t) ) Y f(t) - Y ∞

f ) 〈0|δŶ(t)|0〉 (at t . d2/D). In the simplest
case of small initial distance and long time, when∆/xDt , 1,
the expansion of the Laplace transform (eq 29) in smallε (or
more correctly in small|δq̂|d , 1, whereδq̂ ) q̂ - q̂W andq̂W

) xŴg/D) and the subsequent inverse Laplace transformation
yield

whereŴg ) Ŵm + Ŵl, Π̂* ) 1 - L̂*/ri is the matrix of escaping
probabilities and

in which erfc(x) ) (2/xπ) ∫x
∞ dz exp(-z2) is the error

function.17 The functionΦ(x) is monotonically decreased asx
is increased [withΦ(0) ) 1 andΦ(x f ∞) ∼ (2x)-1 e-x].

In principle, expansion in|δq̂|d , 1 does not imply that
|q̂W|d , 1, although if |q̂W|d ∼ 1, eq 36 is valid only at
relatively large timest > 1/|Ŵ|.

Equation 36 is a generalization of the corresponding expres-
sion for diffusion-controlled reactions in the absence of gating.15

It is clear from this equation that att . |Ŵl,m| we getΦ(Ŵt) ≈
|0〉〈0|; therefore, the asymptotic time behavior ofY(t) coincides
with that predicted by the conventional formula:15 Y(t) ) (4πD
xπDt)-1 k∞(1 - L*/ri), wherek∞ ) 〈0|k̂∞|0〉 andL* ) 〈0|L̂*|0〉.
Note, however, that the form of the functionΦ(Ŵt), and thus
the form of convergence of the yieldY(t) to the conventional
asymptotic one essentially depends on the spectrum of the matrix
Ŵ.

P(t . Kλ∞
-1) ) pm exp(-Kλ∞t) (28)

Ĝg(r,ri|ε) ) Ĝg
f (r,ri|ε) ) [eq̂|r-d| + e-q̂(r-d)Γ̂]/(8πq̂rr i) (29)

Yf(t) ) d
ri

[ 1
2πi ∫-i∞+σ

i∞+σ dε

ε 〈0| κ̂0
1

κ̂ + q̂(ε) |0〉 e-∆xε/D+st]
(30)

Y∞
f ) 〈0|Ŷ∞

f |0〉 ) (d/ri)〈0|κ̂0(κ̂ + q̂W)-1|0〉 (31)

L̂ ) dκ̂0(κ̂ + q̂W)-1 and L̂* ) d(κ̂ + q̂W)-1
κ̂0 (32)

k̂∞ ) 4πDL̂ and k̂∞
/ ) 4πDL̂* (33)

Y∞
f ) Lf/ri andLf ) d〈κ0〉0/(1 + d〈κ0〉0) (34)

Y∞
f ) d2 〈κ0/(1 + dκ0)〉0/ri (35)

δŶ(t) ) Ŷf(t) - Ŷ∞
f ) 1

(4πD)xπDt
k̂∞Φ(Ŵgt)Π̂* (36)

Φ(x) ) e-x [1 - xπx ex erfc(xx)] (37)
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B. Bulk Reactions. The bulk GR kinetics is controlled by
the matrixK̂(t) defined in eq 26. The main problem of analysis
of the kinetics is in evaluating the time-dependent ratek̂(t).
Specific features of this time dependence are determined by
the analytical properties of the Green’s functionĜl(r|ε), which
satisfies eq 21. In the free diffusion model this function can be
obtained analytically without difficulties by the method devel-
oped in ref 11:

Hence, according to eqs 24-27 the problem reduces to some
matrix operations and evaluation of the inverse Laplace
transform. In general, this can be done only numerically.
Analytical expressions can be derived only within simple models
of rate fluctuations (see below). Equation 25, however, is very
useful for qualitative analysis of the problem.

For the sake of convenience we will consider the cases ofl-
andm-gating separately.

1. Gated Ligands.For gated ligands (l-gating) the time-
dependent survival probabilityP(t) for m-molecules is given
by eq 23: P(t) ) Pl(t), in which the time dependence of the
reaction ratekl(t) is determined byĝ(d/t) (see eqs 17 and 18).
In general, the functionkl(t) can be obtained by numerical
calculation. Here we analyze only the most important asymptotic
(at t . d2/D) specific features ofk(t).

As it follows from eqs 24-27, the long time asymptotic
reaction kinetics is determined by the steady-state rate

in which k̂l∞ ) k̂l(t f ∞) ) 4πd Dκ̂0(κ̂ + q̂Wl)-1 with q̂Wl )
xŴl/D. The long time tail (att . d2/D) of the time-dependent
rateδkl(t) ) kl(t) - kl∞ can be calculated with eqs 24-27 using
an approximate expression forĜl(r|ε) obtained by expansion
in small |q̂l(ε) - q̂Wl|d , 1:

Here

with Φ(x) defined in eq 37 andk̂l∞
/ ) 4πd D(κ̂ + q̂Wl)-1 κ̂0, in

accordance with eq 32.
Equations 36 and 41 demonstrate the close relation of the

long time dependencies ofδk̂l(t) andδŶ(t) similar to that in the
theory of diffusion-controlled ungated reactions.15

Equation 40 shows thatl-gating strongly affects the long time
kineticsδkl(t). This equation is the generalization of the well-
known expression for the long time asymptotic behavior of
δkl(t) in the absence of gating.15 In general, eq 40 describes the
relaxation ofδkl(t) from δk<(t) ) 〈kl∞kl∞

/ 〉l(4πDxπDt)-1 at rel-
atively small t < 1/|Ŵl| to δk>(t) ) 〈kl∞〉l〈kl∞

/ 〉l(4πDxπDt)-1

at t > 1/|Ŵl|, where the average is taken over the reactivity
distribution in the equilibriuml-gating state according to
definition 5. The functional form of crossover fromδk<(t) to
δk>(t) depends on the specific features of the gating rate matrix
Ŵl. Some examples of this form will be analyzed in section V.

2. Gated Macromolecule.It follows from eqs 24-28 that the
long time asymptotic kinetics ofm-gated reactions is determined
by the matrixK̂∞ ) K̂(t f ∞) ) clk̂∞ + Ŵm ) K̂b + Ŵm in the
space ofm-gating states|mµ〉. In general, this kinetics is
nonexponential, however, if the matrixK̂∞ has well-separated
eigenvalues and the minimum eigenvaluekλ∞, corresponding
to the eigenstate|λm〉, is nonzero, then at fairly long timest .
1/|K̂∞| the kinetics becomes exponential and the rate

In principle, the rateKλ(t) depends on time, and this
dependence is typical for diffusion-controlled reactions. At
sufficiently long times t . d2/D the time-dependent term
δkλ(t) ) kλ(t) - kλ∞ of the total rate can be evaluated similarly
to eq 40.

Analysis shows, however, that if the spectrum of the matrix
Ŵm is continuous near zero (corresponding to the equilibrium
state|0m〉), the reaction kinetics is strongly nonexponential at
long times. Some additional discussion of this effect will be
continued in section V.

Equations 42 and 43 demonstrate the important specific
feature of GRs: in the presence ofm-gating there is no relation
between parameters of geminate and bulk GRs. For example,
according to eq 34 the total geminate reaction yieldY ∞

f ) L/r i,
where L is the effective reaction radius. In the absence of
m-gating this radius determines the asymptotic (att f ∞) bulk
reaction rate:k∞ ) 4πdDL in agreement with general rules for
diffusion-controlled reactions.15 This relation, however, is not
valid for m-gated reactions as evident from eq 42. Furthermore,
in this case there is no relation between amplitudes of the long-
time asymptotic dependenciesδkλ(t) andY(t), although in some
cases discussed above the long time dependenceδkλ(t) ∼ 1/xt
in agreement with that known in the theory of diffusion-
controlled reactions.15

IV. The Effect of Interaction. Exponential Model

A. Geminate Reactions. In general, in the presence of
interactionU(r) the analytical solution of the SLE (eq 1) is
impossible. However, in the realistic limit of localized potentials
in the shape of a deep well, in whichê ) a|q̂| , 1, wherea
is the Onzager radius defined by the relationâU(a) ) 1, the
SLE (eq 1) can be solved by expansion in smallê.18,19 In this
limit the reaction kinetics is completely determined by the
probability of staying within the well (cage), which, when pairs
are created in the well, is given by

where|n0〉 ) ∫d
a d3r|pg

0(r)〉 ) |0〉 and

In eq 45

is the sum of matrices of gating rates (Ŵm andŴl), the matrix
of cage reaction ratesŴr ) D(d2κ̂0eâU(d))/∫d

a dr r2 e-âU(r) and

Ĝl(d|ε) ) Ĝl
f(d|ε) ) 1

κ̂ + q̂l

(1 + dq̂l)

dq̂l
2

(38)

kl∞ ) 〈0l|k̂l∞|0l〉 ) 4πd2 D lim
εf0

[ε〈0l|κ̂0Ĝl(d|ε)|0l〉] )

4πd D〈0l|κ̂0(κ̂ + q̂Wl
)-1|0l〉 (39)

δkl(t) ) kl(t) - kl∞ ) 〈0l|δk̂l(t)|0l〉 (40)

δk̂l(t) ) k̂l - k̂l∞ ) 1

4πDxπDt
k̂l∞Φ(Ŵlt)k̂l∞

/ (41)

kλ∞ ) 〈λm|K̂∞|λm〉 ) 〈λm|K̂b + Ŵm|λm〉 (42)

δkλ(t) ) kλ(t) - kλ∞ ) cl〈λm|k̂(t) - k̂∞|λm〉 )

cl〈λm|k̂∞
2 |λm〉/(4πDxπDt) (43)

|n(t)〉 ) ∫d

a
d3 r|p(r|t)〉 ) 1

2πi ∫-i∞

i∞
dε estĜc(ε)|n0〉 (44)

Ĝc(ε) ) [ε + Ŵ + wdaq̂(ε)]-1 (45)

Ŵ ) Ŵm + Ŵl + Ŵr + wd (46)
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the cage dissociation ratewd ) D/(∫re

∞ dr r-2 eâU(r) ∫d
a dr r2

e-âU(r)) in which re is the radius of the bottom of well.
Equations 45 and 46 show that in the presence of sufficiently

deep potential well the exponential stage of evolution of pairs
for a relatively long period up tot ∼ tc ≈ (wd + |Wr|)-1

ln(D/wda2) appears, which att > tc is replaced by the inverse
power type one:|n(t)〉 ∼ t-3/2, corresponding to free diffusion
outside the well.18,19 This means that the effect of slow rate
fluctuations, for which|Ŵl + Ŵm|tc < 1 is properly described
by the free diffusion model, i.e., using the results of section III,
whereas in the opposite limit of fast rate fluctuations, when|Ŵl

+ Ŵm|tc > 1, this effect can be treated within the exponential
model. Here we concentrate on the exponential model, which
allows the description of specific features of gated reactions in
the presence of strong interaction.

In the exponential model, evolution of the matrixĝg
e is

described by eq 47:

with the initial conditionĝg
e ) Ê. The geminate reaction yield

is written as

where

evidently coincides withĜc(ε) in the limit |Ŵl + Ŵm|tc < 1
when the termwdaq̂(ε) can be neglected.

Equation 48 is conveniently represented in the form

whereφ(t) ) 〈0|exp(-Ŵt)|0〉 and

is the total reaction yield.
Equations 48-51 reproduce correctly both limits of fast and

slow fluctuations discussed within the free diffusion model in
section III. These equations reduce the problem of calculating
the yield Y(t) to matrix operations and the inverse Laplace
transform. For some simple gating models this can be done
analytically (see section V).

B. Bulk Reactions. The kinetics of bulk reactions is
determined by the corresponding matrix, which satisfies eq 52:

whereŴe ) Ŵl + Ŵr + wd andKc is the rate of capture into
the cage. The last term in the SLE (eq 52) describes the flux of
gatedl-molecules into the cage. The initial condition for eq 52,
corresponding to the equilibrium distribution within the well,
is written asĝb

e(t ) 0) ) ĝb
0 ) (Kc/wd)Ê. The general theory18,19

shows that in the presence of the potential well (cage) the
expression (eq 23) for the survival probability is still valid, but
the GR rate is given by

with

It is clear from eq 53 that the steady-state GR rate

V. Simple Models for Gating

Formulas derived above in the free diffusion and exponential
(cage) models still require some matrix operations, which cannot
be carried out without specification of the gating mechanism
(the form of matricesŴm and Ŵl). In section V we consider
two simple models in which the matrix operations are performed
and some analytical formulas for specific parameters of GR
kinetics are obtained.

A. Relaxation Time Model. In the RTM the matricesŴm

andŴl are taken in the form

where the projection operatorsP̂j and Q̂j are defined in eq 6,
and wm and wl are the fluctuation rates of reactivities of the
macromolecule and ligand, respectively. RTM makes it possible
to significantly simplify the expressions for kinetics of geminate
and bulk GRs. The main simplifications result from the special
relation that is valid for the projection operatorsP̂j andQ̂j

whereF(x) is any smooth function.
The general expressions obtained in the gating of both ligands

and macromolecules is too cumbersome so that here we restrict
ourselves to analysis of gating in only one kind of reagent:
either ligands (j ) l) or macromolecules (j ) m).

1. Geminate Reactions. a. Diffusion Model.Substituting
relation 57 into the general formula (eq 30), one obtains the
simple expression for the total yield of the geminate GR in the
free diffusion model:

Hereqµ
0 ) xwµ/D,

andp(κ0) is the distribution function of reaction ratesκ0, which
for the sake of generality is assumed to be a continuous function
of κ0. This formula reproduces all general specific features of
the total yield discussed in section IIIA. It can be considered as
a simple and reasonable interpolation formula correctly describ-
ing all general limiting relations discussed above.

RTM also allows significant simplification of the eq 36 for
the long time tail of the yield:

where the functionΦ(x) is defined by eq 37,Π ) 〈0|Π̂|0〉 is
the escaping probability in the equilibrium gating state (for
definition see eq 36), andk∞ ) 〈0|k̂∞|0〉. It is important to note
that in RTM k∞

/ ) k∞ (see eq 61) and thusΠ ) Π*.

ĝg
e ) -Ŵĝg

e (47)

Ye(t) ) 〈0|ŴrŴ
-1[1 - exp(-Ŵt)]|0〉 )

1
2πi ∫-i∞

i∞
dε ε

-1 〈0|ŴrĜe(ε)|0〉 est (48)

Ĝe(ε) ) Ĝc(ε,a ) 0) ) (ε + Ŵ)-1 (49)

Ye(t) ) Y∞
e - [φ(t) - Wd ∫t

∞
dτ φ(τ)] (50)

Y∞
e ) Ye(t f ∞) ) 〈0|ŴrĜe(0)|0〉 ) 〈0|ŴrŴ

-1|0〉 (51)

ĝ̆l
e ) -Ŵeĝl

e + KcÊ e-Ŵt (52)

k̂(t) ) 1
2πi ∫-i∞

i∞
dε ε

-1〈0l|ŴrĜl
0(ε)|0l〉 est (53)

Ĝl
0(ε) ) (ε + Ŵl)Ĝl(ε) ) Kc(ε + Ŵe)

-1 (54)

k∞ ) 〈0l|k̂∞|0l〉 ) 〈0l|Kc/Ŵe|0l〉 (55)

Ŵj ) wj(Êj - P̂j) ) wjQ̂j (56)

F(xP̂j + yQ̂j) ) P̂jF(x) + Q̂jF(y) (57)

Y∞
f ) L

ri
) d

ri [1 -
Λ0

1 - q0
µdΛ0

] (58a)

Λ0 ) ∫dκ0

p(κ0)

1 + d(κ0 + qµ
0)

(58b)

δYf(t) ) 1

(4πD)xπDt
[k∞Π + (〈0|k̂∞Π̂|0〉 - k∞Π)Φ(wt)]

(59)
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b. Cage (Exponential) Model.Formulas similar to eqs 58 and
59 can also be obtained in the exponential model. In particular,
the total yield of GR

where µ ) m,l and p(Wr) is the (continuous) distribution
function of reaction rates. Equation 60, similar to eq 58,
reproduces all general specific features of the total yield
mentioned in section IV.

As for the time dependence of the yieldY(t), according to eq
48 calculation of this dependence reduces to evaluating the
average of the exponential operator over the equilibrium gating
state. This problem will be discussed in detail in section VA.2b
(see eq 66). Here we only present the main results. In accordance
with the general statement of section IIB the characteristic
features of time behavior of this average is determined by the
spectrum of the operatorŴ. The definition (eq 46) shows that
all eigenvalues ofŴ are nonzero; thus, at long times the yield
Y(t) decreases exponentially att > 1/wd. However, the behavior
of Y(t) at smaller timest < 1/wd depends on specific features
of the spectrum ofŴ in the region of eigenvalues larger than
wd.

2. Bulk Reactions.The general analysis in section IIB
demonstrates that the kinetics of bulk GRs is essentially different
for the gated ligands (l-gating) and macromolecules (m-gating).5

The kinetics ofl-GRs is exponential att . d2/D. The transient
time dependence of the rate constant shows itself in this case
as a deviation of bulkl-GR kinetics from the exponential at
finite times. As form-GRs, the kinetics of these reactions is
significantly nonexponential at all times. In that case the
contribution of the transient nonexponential part of the process
can hardly be distinguished from the main nonexponential
kinetics describingm-GRs. In other words calculation of the
small asymptotic transient part of kinetics eq 41 is nearly useless
for m-GRs, and form-gating we restrict ourselves to evaluating
only the long time behavior ofP(t) determined byK̂∞ ) K̂(t f
∞) (defined in eq 26) both in the diffusion and cage (exponen-
tial) models.

a. Gated Ligands. 1. Diffusion Model.In l-gating the steady-
state rate constant of bulk GR is determined by eq 33 which
predicts in RTM

with L ) d[1 - Λ0/(1 - ql
0 dΛ0)], in agreement with eq 58a.

The parameterΛ0 is given by eq 58b but withqµ
0 replaced by

ql
0 ) xwl/D. The expression (eq 36) for the long tailδkl(t) is

also represented within RTM in very simple form

whereΦ(x) is defined by eq 37. In accordance with the remark
in section III.B1 and definition (eq 33), the term in square
brackets in eq 62 decreases from〈0|k̂l∞

2 |0〉 ) 〈kl∞
2 〉l to kl∞

2 )
〈kl∞〉l

2 e 〈kl∞
2 〉l.

2. Cage Model.In this model the asymptotic (att f ∞)
steady-state rate of the bulk GR is written as (eq 55)kl∞ )
KcY∞

e , whereY∞
e is the total yield of geminate GR given by eq

60 in which wµ should be replaced bywl. Evaluation of the
time-dependent partδkl(t) reduces to the average of the matrix

exponential operator, as seen in eq 53. The methods of
calculation of this average as well as its dependence on the
specific features ofŴl andŴr are discussed below.

b. Gated Macromolecules.As pointed out in the beginning
of this section, inm-gating the most important nonexponential
behavior of kinetics of bulk GRs results from the spread of the
steady-state rates determined by the matrixK̂∞ ) K̂(t f ∞) )
ck̂∞ + Ŵm ) K̂b + Ŵm (see eq 26). Neglecting the transient
part of GR kinetics, we can write the expression for survival
probability asP(t) ) 〈0m| exp(-K̂∞t)|0m〉. RTM allows the
analysis of some interesting features ofP(t).

In RTM the Laplace transform

where

in which p0(kj) ) 〈0m|j〉〈j|0m〉 is the distribution function of
eigenvalues (reaction rates) ofK̂b ) ck̂∞ in the equilibrium state
|0m〉. In general, eq 63 predicts the exponential asymptotic
behavior of P(t) with the rate equal to the lowest nonzero
(positive) root of the equationwmτ(-ε) - 1 ) 0.

Equations 63 and 64 show that the specific features ofP(t)
are determined by the distribution functionp0(k). We have
already mentioned that the functionP(t) can be calculated
analytically5,8 in the markovian two-state model of gating, which
is a particular case of the proposed RTM. The general RTM
(eq 56), however, enables one to obtain the analytical expression
for P(t) in some more realistic models assuming a continuum
of gating states.

Here we analyze one of these models in which the distribution
function

This strange (at first sight) distribution function is actually
similar to that implied in the model discussed in refs 6 and 7.
The model suggests thatk ) s2, where s is the Gaussian
fluctuating parameter for which the distribution functionp0(s)
is naturally Gaussian:p0(s) ) exp[-(s/s0)2]. In this s-param-
etrization (k ) s2) the model function (eq 65) corresponds to
the Lorentzian distribution function:p0(s) ) (s0

2 + s2)-1 with
s0 ) xk0.

Calculation of the functionτ(ε) with the use ofp0(k) (eq 65)
and the subsequent inverse Laplace transformation yield

wheref( ) x1+(k0/4wm) ( xk0/4wm, ν0 ) 1 - f-2 < 1, and
τ ) wmt. Note that the long time behavior ofP(t) (for f(τ . 1)
is determined by the first term in eq 66; therefore, the long
time tail of kinetics is exponential with the ratewmV0 < wm.
The ratewmV0 is especially small fork0/wm , 1: wmV0 ) wm

xk0/4wm , wm. In the opposite casek0/wm . 1, we havef+ .
f-; therefore, the kinetics is, in fact, determined by the second
term in eq 66, whose amplitude is much larger than that of the

P̃(ε) ) 〈0m|(ε - K̂∞)-1|0m〉 ) τ(ε)/[1 - wmτ(ε)] (63)

τ(ε) ) ∫0

∞
dkb

p0(kb)

ε + wm + kb
(64)

p0(k) )
(1/π)
k0 + kxk0

k
(65)

P(t) )
2f-

f- + f+
e-ν0τ +

1
f- + f+

e-τ[f+ef +
2 τ erfc(f+xτ) - f-ef -

2 τ erfc(f-xτ)] (66)

Y∞
e ) 1 -

wdτ0

1 - wµτ0
with τ0 ) ∫ dWr

p(Wr)

wµ + wd + Wr

(60)

kl∞ ) kl∞
/ ) 4πDL (61)

δkl(t) ) 1

(4πD)xπDt
[kl∞

2 + (〈0|kl∞
2 |0〉 - kl∞

2 )Φ(wlt)] (62)
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first term, although the behavior is still nearly exponential:P(t)
) t-3/2 exp(-wmt). Time dependence of the preexponential
factor appears to be determined by the behavior ofp0(k) at small
k. In particular, forp0(k) ) k-ν (ν > 0), eq 63 predictsP(t) )
t-(1+ν) exp(-wmt).

B. Single Reactive Channel Model.The SRCM assumes
that only one state|r〉 is reactive, i.e.,

It is convenient for our further discussion to introduce the
distribution function of gating rates:

The normalization condition forpν(wj) is fulfilled automati-
cally because∑j pν(wj) ) ∑j〈rν|jν〉〈jν|rν〉 ) 〈rν|rν〉 ) 1.

For further analysis of the problems it is convenient to
represent the distribution functionpν(w) in the form

in which pν
n(w) is the distribution of nonzero gating rates

(assumed to be continuous). Similar to the definition (eq 33),
we introduce a special definition for the matrix element
〈r|F(Ŵ)|r〉 which is actually the average ofF(w) over pν(w):

1. Geminate Reactions.It is clear that the model (eq 66) leads
to matrix expressions similar to those discussed in section VA
from mathematical point of view; in these matrices some terms
are proportional to the projection operator on one of states.
Therefore SRCM permits the significant simplification of
general matrix expression for RG kinetics similar to those
derived in RTM.

a. Diffusion Model.The expression for the total yield

whereΛr ) 〈Λ〉r is the average defined by eq 70 in whichΛ(w)
) (1 + d xw/D)-1.

In SRCM the general expression (eq 36) for the long time
tail δYf(t) can also be represented in analytical form:

with k∞ ) 4πDL and

in which

It is easily seen thatΘn(t) f 0 andΘ(t) f 1 ast f ∞ because
of the small weight of the equilibrium state in the distribution
function pν

n(w). The asymptotic behavior ofΘn(t) at large t
depends on specific features of the functionpν

n(w) at smallw.
b. Cage (Exponential) Model.In this model for the total yield

of GR SRCM gives

with τn ) ∫ dw pν
n(w)(wd + w)-1. In the limit of slow

relaxation, whenτn ≈ 1/wd is determined by the ratesw , wd,
eq 75 reduces to the evident expressionY∞

e ) p0wr/(wd + wr),
which means that the yield is controlled by the only reactive
channel whose statistical weight isp0.

The transient part of geminate reaction kinetics is given by
eq 50 and includes averaging of exponential matrix inφ(t).
Specific features of this average and thus the transient part of
the yield are discussed in section VB2.

2. Bulk Reactions.Similar to the consideration in RTM, in
SRCM we will discuss separately the gated ligands and
macromolecules, and form-gating we will only analyze the long
time behavior ofP(t) determined byK̂∞ ) K̂(t f ∞).

a. Gated Ligands. 1. Diffusion Model.Calculation of the
steady-state rate ofl-GR with the use of eq 30 gives

whereL ) p0κrd2/(1 + κr dΛr) andΛr is defined in eq 71.
In SRCM simple analytical can also be derived for the long

time tail (eq 41):

where the functionΘ(t) is defined by eq 73. It was mentioned
earlier thatΘ(t) f 1 ast f ∞. This means that, in agreement
with the general statement in section IIIB, at very large times
t . 1/|ŴV|, the relation forδkl(t) is predicted by the theory15

for the ungated reactions with the steady-state ratekl∞ given by
eq 76. SRCM, however, enables one to obtain behaviorδkl(t)
at large times independently of the relation betweent and
1/|ŴV|.

2. Cage (Exponential) Model.As in RTM, in SRCM the
steady-state rate ofl-GR is proportional to the yieldY∞

e (eq 75)
of geminate GR:kl∞ ) KcY∞

e . The time-dependent partδkl(t) is
determined by the average matrix exponential operator as it
follows from eq 53. The main features of this kind of average
will be analyzed somewhat later in the discussion of kinetics
of m-GRs.

b. Gated Macromolecules.In accordance with the general
consideration of section IIB the long time behavior of the
survival probability for gated macromolecules is given byP(t)
) 〈0m| exp(-K̂∞t)|0m〉, where K̂∞ ) K̂(t f ∞) ) K̂b + Ŵm,
regardless of the model of relative motion. For simplicity we
assume thatK̂b ) ck̂m∞ ) kr|r〉〈r|, although, strictly speaking, it
is not implied by eq 67. This model allows the analysis of
specific features ofP(t) within some general assumptions on
behavior ofpr(w).

Simple calculation for the Laplace transformP̃(ε) gives:

where

In principle, the kineticsP(t) can be obtained numerically
for any functionτn(ε) by inverse Laplace transform ofP̃(ε) (eq

Y∞
e ) p0

wr/wd

1 + p0(wr/wd) + (1 - p0)wrτn

(75)

kl∞ ) kl∞
/ ) 4πDL (76)

δkl(t) ) 1

(4πD)xπDt
kl∞

2 Θ(t) (77)

P̃(ε) ) 〈0m|(ε - K̂∞)-1|0m〉 ) [ε + kr

p0

1 + (1 - p0)krτn(ε)]-1

(78)

τn(ε) ) ∫ dwm pm
n (wm)(ε + wm)-1 (79)

κ̂0 ) κr|rν〉〈rν| and Ŵr ) wr|rν〉〈rν| (ν ) m,l) (67)

pν(w) ) 〈rν|jν〉〈jν|rν〉 (68)

pν(w) ) p0δ(w) + (1 - p0)pν
n(w) (69)

〈r|F(Ŵ)|r〉 ) 〈F〉r ) ∫ dw pν(w)F(w) )

p0F(0) + (1 - p0) ∫ dw pν
n(w)F(w) (70)

Y∞
f ) L

ri
) 1

ri
(d p0dκr

1 + dκr Λr
) (71)

δY(t) ) 1

4πD xπDt
k∞ (1 - L

ri
Θ(t)) (72)

Θ(t) ) 1 + p0
-1(1 - p0)Θn(t) (73)

Θn(t) ) ∫ dw pν
n(w)Λ2(w)Φ(wt) (74)
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78). However, here we analyze only the qualitative specific
features ofP(t).

(a) If τn(ε) is the analytic function ofε possessing a number
of poles [in particular, for a finite number of gating statesτn(ε)
) ∑j ωj/(ε + εj)], then the formula predicts the exponential
long time behavior ofP(t):

with the rate equal to the lowest positive root of the equation

In general, this root must be obtained numerically. In some
limits, however, it can be found analytically.

(b) It is evident that if 1- p0 , 1, so that (1- p0)krτn(-kr)
, 1, thenke ) p0kr.

(c) If p0 , 1 andτn(ε) is finite atε ) 0, with high accuracy
one can setτn(ε) ≈ τn(0) ) τ0, in eq 78 forP̃(ε) thus arriving
at the exponential reaction kinetics (eq 80) with

(d) If p0 , 1 andτn(ε) is a finite but nonanalytic function of
ε at ε ) 0, for example,τn(ε f 0) ) τ0 + τ1(ε/ε1)R with 0 <
R < 1, the exponential asymptotics (eq 80) is intermediate. At
very larget it is replaced by the final dependenceP(t) ≈ t-(1+R).
This is because in this case at smallε, P̃(ε) is represented as

It is easy to see that the inverse Laplace transform of this
function gives the above-mentioned inverse power type long
time tail of P(t).

(e) If the distribution functionpr
n(wm) is singular atwm f 0:

pr
n(wm) ) wm

-R with 0 < R < 1; τn(ε) is also singular atε f 0:
τn(ε) ) ε-R. Such a behavior ofτn(ε) leads to the strongly
nonexponential long time tail ofP(t): P(t) ) P>(t) ) tR-1. The
above-mentioned exponential kinetics is observed only at
relatively short timest < t*, wheret* is defined by the relation
Pe(t*) ) P>(t*).18,19

VI. Discussion

In this work we proposed a general method to describe the
effect of gating on the kinetics of stochastically gated, diffusion-
controlled reactions. The method is based on application of the
theory of MFEs on liquid-phase chemical reactions.10,11 The
treatment with MFEs reduces the solution of the SLE which is
actually a system of coupled differential equations of the second
order.12-14 One of important ideas of the theory of MFEs is to
solve the complicated SLEs (for the spin-density matrix) just
in the matrix form without any assumptions on mechanisms of
transitions between spin states of reacting molecules, i.e., the
mathematical form of the coupling of differential equations. It
appears to be much easier to analyze these mechanisms in the
final matrix expressions for observables. The fairly simple and
general method of solution of the SLE developed in refs 10
and 11 is applied quite successfully in the theory of MFEs.

The basic eq 1, which describes the effect of gating on
reaction kinetics in the markovian approximation for reaction
rate fluctuations, is very similar to the SLE used in the theory

of MFEs. Therefore the above-mentioned method of solving
the SLE in the matrix form can be applied straightforwardly to
the analysis of GRs. This method is described comprehensively
in refs 10 and 11. In our work, we have restricted ourselves to
the presentation and application of final formulas.

In section II with this method we obtained some general
expressions for GR kinetics that seem to be useful for the
analysis of kinetics. Analysis of kinetics in the free diffusion
and exponential (cage) models, carried out in sections III and
IV, has demonstrated the great capabilities of the proposed
method that allows the derivation of expressions for observables
in the compact matrix form. These expressions were used in
section V to obtain simple analytical formulas within the two
markovian models of gating, RTM and SRCM.

To clarify some important points of the analysis performed,
we would like to add some general comments on our results.

(1) Expressions 36 and 40 for the transient parts of diffusion-
controlled geminate and bulk GRs were obtained for the first
time. These formulas clearly reveal the above-mentioned
advantages of the method proposed in refs 10 and 11. This
method has enabled us to derive the formulas without any
assumptions based on the mechanism of gating (the form of
Ŵg). The expressions obtained generalize the corresponding
expressions for the transient part of reaction kinetics known in
the theory of diffusion-controlled, ungated reactions. They show
that gating strongly interferes with the diffusion-controlled
relaxation of the spatial distribution function of reagents giving
rise to strong change of the long time tail of GRs kinetics. These
general matrix expressions are reduced to very simple analytical
ones in RTM and SRCM.

(2) In the presence of the attractive interaction potential well,
when the long-lived intermediate state in the well is formed,
the statistics of re-encounters and thus reaction kinetics sub-
stantially change.18,19At a relatively small initial time it becomes
exponential and then it changes by conventional inverse power
one. The effect of gating appears to be very sensitive to the
statistics of re-encounters and, in particular, at relatively short
times the universal relations (eqs 36 and 40) should be replaced
by eqs 50 and 53, corresponding to the exponential model. In
our work we did not analyze in detail the long time tail of
transient kinetics predicted by the exponential model. The
problem was reduced to evaluating the average of matrix
exponential functions. Within the considered models of gating
it can be done with the use of formulas describing bulk reaction
kinetics, which is determined by the averages of similar types.

(3) Most recent theoretical works concentrate on analysis of
gating either in the model based on the assumption the first-
order reaction ratek(t) ) k[s2(t)], wheres(t) is the Gaussian
stochastic process,6,7 or in the markovian two-state model.5,8

The main difficulty in the treatment of first-order reactions lies
in averaging the exponential functional〈exp[∫t dτ k(τ)]〉k over
fluctuations of the rate constantk(t). The markovian RTM and
SRCM proposed in section V essentially extend the number of
analytically solvable models for these first-order GRs. They
permit the detailed analysis of some interesting specific features
of GRs. In particular, in the most reasonable case of smooth
(analytic) behavior of probability distributionsp0(k) (in RTM)
and pr

n(w) (in SRCM) the long time kinetics of bulk GRs is
exponential with the rate obtained from general expressions 63
and 78, respectively. However, ifpr

n(w) is singular at smallw
SRCM predicts strongly nonexponential long time tail of kinetics
P(t) (see discussion in the end of sections VA.2 and VB.2).
New analytically solvable models such as eqs 65 and 83 are of
special interest because they make it possible to describe the

Pe(t) ∼ exp(-ket) (80)
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changeover from the exponential bulk GR kinetics to nonex-
ponential one at long times.

(4) In our work we have considered the simple variants of
RTM and SRCM. Their combination provides the simplest
models of gating. However, one can easily generalize these two
models. For example, in SRCM the number of reactive channels
can be increased but at the cost of complicating the problem.
Some intermediate gating states can also be added in RTM by
treating them as reactive channels with the use of SRCM,
although assuming, for the sake of generality, that the reactivity
in these channels is reversible. In this way a large variety of
different simple and flexible models of gating can be formulated
to describe realistic gating processes.

(5) In this work we have not discussed the effect of anisotropy
of reactivity on GRs. This effect is expected to be quite
important.4 The method of analytical treatment of the interfer-
ence of reactivity anisotropy and gating is actually well known
in the theory of MFEs.20 Analysis of this interference by the
method developed in ref 20 will be presented in a separate
publication.

VII. Conclusion

This work concerns the analysis of the kinetics of stochasti-
cally gated, diffusion-controlled GRs within the markovian
approximation for fluctuations of reactivity. In this analysis we
have discussed some basic properties of GR kinetics, although
predictions of two particular models are thoroughly analyzed
as well. The proposed method is fairly general and can be
applied to many other models of gating. Some of them were
mentioned in the Discussion. The proposed models are flexible
enough and quite convenient for application to the analysis of
experimental kinetic data.
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